• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signální dráhy u nádorů slinivky břišní a jejich léčba cílením na mitochondrie / Signalling pathways in pancreatic cancer and its treatment by targeting of mitochondria

Ezrová, Zuzana January 2021 (has links)
Pancreatic cancer is one of the deadliest types of malignant diseases. Asymptomatic early tumour stages, tumour heterogeneity, cancer cell plasticity and unusually dense pancreatic stroma are responsible for the poor prognosis attributed to late diagnosis and therapy resistance. Therefore, targeting of a pivotal element common for any cell type within the tumour, e.g. mitochondria, may bring significant improvement. In this work, we demonstrate mitochondrial targeting of metformin, an anti-diabetic drug associated with reduced risk of developing pancreatic cancer, substantially increases accumulation of the compound in mitochondria. In consequence, we show that mitochondrially targeted metformin, MitoMet, eliminates pancreatic cancer cells in more than 1000-fold lower concentration than used for its parental compound. Following interaction with respiratory complex I (CI), MitoMet inhibits mitochondrial respiration, activates AMP-activated protein kinase pathway and causes depolarization of mitochondrial membrane potential in pancreatic cancer cells. Moreover, MitoMet induces cell cycle arrest and apoptosis, which is partially mediated via increased level of reactive oxygen species (ROS), and suppresses pancreatic tumour growth in vivo. Interestingly, SMAD4-deficient pancreatic cancer cells manifest...
2

Einflussnahme von TGFβ auf die Strahlensensibilität lymphoblastoider Zellen / Influence of TGFβ on the radiosensibility of lymphoblastiod cells

Springer, Katarina 14 April 2016 (has links)
No description available.
3

Einfluss von Keimbahn-Polymorphismen in Genen des TGFβ-Signalwegs und der DNA-Reparatur auf die Strahlenempfindlichkeit Humaner Lymphoblastoider Zellen / Influence of germline polymorphisms in genes of the TGFβ-pathway and of the DNA-repair on the irradiation sensitivity of human lymphoblastoid cells

Brinkmann, Karin Maria 13 March 2017 (has links)
Neben chemotherapeutischen und chirurgischen Maßnahmen ist die Bestrahlung integraler Bestandteil multimodaler Therapiekonzepte bei malignen Tumorerkrankungen. In diesem Zusammenhang spielt der Einblick in physiologische und pathophysiologische Abläufe in menschlichen Zellen und auf molekularer Ebene  eine zunehmende Rolle. Auf diese Weise werden komplexe Stoffwechselwege mit ihren unterschiedlichen Funktionen und ihren aus einzelnen Proteinen bestehenden Komponenten immer besser verstanden. Allerdings entstehen durch die Kenntnis dieser Stoffwechselwege neue Fragen, die Gegenstand medizinischer Forschung sind.  Der TGFβ-Signalweg ist ein wesentlicher intrazellulärer Signalweg, der neben zahlreichen anderen Funktionen einen Einfluss auf die Entstehung bestimmter Tumorerkrankungen hat. Eine Vielzahl an Einzelnukleotid-Polymorphismen (single nucleotide polymorphisms, SNP) ist bekannt sowie die Erkenntnis darüber, dass die Anwesenheit von verschiedenen Varianten eines SNP einen Einfluss auf die Zellvitalität hat je nach Behandlungsbedingung. Ziel dieser Arbeit war es den Einfluss von Keimbahn-Polymorphismen in Genen des TGFβ-Signalwegs und der DNA-Reparatur auf die Strahlenempfindlichkeit lymphoblastoider Zellen zu untersuchen. Hierzu wurden 54 käuflich erworbene lymphoblastoide Zellen angezüchtet. Jede dieser Zelllinien wurde sechs parallelen Behandlungsbedingungen unterworfen. Neben der unbehandelten Kontrolle und einer mit anti-TGFβ behandelten Kontrolle wurden Zellen einer alleinigen Bestrahlung mit 3 Gy ausgesetzt. Darüber hinaus wurden Zellen 16 Stunden vor der Bestrahlung mit TGFβ1 oder anti-TGFβ vorinkubiert oder unmittelbar nach der Bestrahlung mit TGFβ1 behandelt.  Nach Ablauf einer 24-stündigen Inkubationszeit erfolgte die Zellvitalitätsmessung mittels FACS (fluorescence activated cell sorting)–Analyse. Die Ergebnisse wurden mit Daten von insgesamt 1656 polymorphen Positionen (aus HapMap Datenbank) aus 21 Kandidatengenen korreliert. Auf diese Weise sollte der Einfluss dieser Polymorphismen auf die Zellvitalität ermittelt werden. Sowohl bei SMAD3 als auch bei SMAD7 fanden sich jeweils 2 SNP, die ein perfektes bzw hohes Kopplungsungleichgewicht (linkage disequilibrium) aufwiesen. Insgesamt waren zwölf Polymorphismen aus acht Genen (TGFBR1, SMAD2, SMAD3, SMAD7, BRCA2, MSH2, MSH6 und XRCC1) mit signifikanten Veränderungen der Zellvitalität assoziiert. Das Variantenallel scheint bis auf wenige Ausnahmen einen zytoprotektiven Effekt zu haben. Ausnahmen sind 3 SNP der Gene BRCA2, SMAD3 und SMAD 7, bei denen der Wildtyp mit höherer Zellvitalität einhergeht. Bei alleiniger Bestrahlung wirkten sich SNP aus SMAD3, SMAD7, MSH2 und MSH6 modulierend auf die Zytotoxizität aus, wenn auch statistisch nicht signifikant. Interessanterweise zeigten sich bei Betrachtung der Auswirkung einer Stimulation mit TGFβ1 vor und nach Bestrahlung mit 3 Gy dieselben SNP als statistisch signifikante Modellprädiktoren wie auch bei alleiniger Bestrahlung mit Ausnahme eines SNP aus SMAD3.  Bei Vorinkubation mit TGFβ1 wirkte sich die MSH2-Variante stärker aus. Hier entstand beim Wildtyp ein zusätzlich zytotoxischer Einfluss im Vergleich zur Stimulation nach Bestrahlung. Bei Inhibition durch anti-TGFβ vor der Bestrahlung zeigte noch ein SNP aus MSH6 und ein SNP aus SMAD7 einen zytoprotektiven Effekt.  Einige Ergebnisse dieser Arbeit könnten, sofern sie im Verlauf durch nachfolgende Studien bestätigt bzw. erweitert werden helfen Therapiekonzepte maligner Tumoren zu optimieren und eine individuelle Radiotherapie zu ermöglichen.

Page generated in 0.0828 seconds