• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 110
  • 31
  • 18
  • 14
  • 14
  • 14
  • 13
  • 11
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 420
  • 420
  • 106
  • 75
  • 69
  • 67
  • 60
  • 59
  • 50
  • 44
  • 43
  • 39
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Application of Bayesian Neural Network Modeling to Characterize the Interrelationship between Microstructure and Mechanical Property in Alpha+Beta-Titanium Alloys

Koduri, Santhosh K. 03 September 2010 (has links)
No description available.
292

Development of new high performance Titanium alloys with Fe-addition for dental implants

Mohan, Prakash 13 July 2020 (has links)
[EN] Ti and its alloys are mostly used biomaterials due to its unique properties like (high corrosion resistance, low elastic modulus, high mechanical strength/ density and good biocompatibility). Ti β alloys based on the Ti-Mo alloy system shows unique properties to employ as biomaterials. Tiβ alloys have lower Young Modulus, shielding stress and lower bone reabsorption. This research aims to develop a new biomaterial for a dental implant. This research evaluates the addition of Zr and a small amount of Fe on the β-phase stability and the mechanical properties of Ti-Mo alloy to be employed for the medical applications. These alloys had been produced using two powder metallurgy (PM) techniques; first technique is elemental blending (EB) which had been selected because it enhanced the surface contact between the alloying element and Titanium (Ti) with a cost-effective route. The behavior of different Ti alloys composition was evaluated using this technique. Samples were uniaxial pressed at 600 MPa and sintered at 1250ºC. Second technique evaluated in this study was Mechanical alloying (MA). This technique has higher mixing energy than elemental blend which improves mechanical contact between different particles, and it helps diffusion during the sintering process. Samples were pressed at 600 MPa initially, and after evaluating mechanical properties, compaction pressure is changed to 900 MPa for a high green density of powders. Different mechanical tests and microstructural studies were performed for elemental blend (EB) samples and for mechanical alloying samples to ensure the properties suitable for biomedical applications. Different tests for MA are Fluidity test (suitable to know about the flow of the powder after milling cycle) and Granulometric Analysis (test is suitable for powder distribution analysis). Other tests are common like Archimedes test which is suitable for calculating the porosity of the sintered samples, Three-point bending test is suitable for knowing Bending strength of the sintered samples and to know energy conserved by the breaking samples, Ultrasonic test performed for knowing elastic modulus of the alloys, Hardness test performed for calculating the Vicker´s hardness of the alloy, SEM analysis performed to know about microstructure and EDX analysis(by which proper mixing of the alloying element with the central element would be known). EBSD (Electron Beam Scattered Diffraction) is also performed for more analysis about microstructure, grain size, mixing of different elements in alloys. EBSD is an excellent tool for microanalysis of the material. From the results section, Green density of the alloy, fluidity of the milled powder, Granulometry of the powder, sintered density of the alloy (From Archimedes test), bending strength and bending modulus of the alloy, Elastic modulus by Ultrasonic test, Microstructure of the alloy(By SEM and EBSD Analysis of the sintered part.) are determined. Green density for elemental blend alloys is in the range of (77.42- 78.11%) and for Mechanical alloying samples were (74.94-78.58%). Sintered density obtained by Archimedes' test for the elemental blend is in the range of (96.88- 98.74%). Bending strength obtained from three-point bending test is in range of (666-2161 MPa), and mechanical alloying is in range of (371-1597 MPa). From the high test, Determined Elastic modulus of the alloy is in range of (95.5-103 GPa) and for Mechanical Alloying elastic modulus was in the range of (66-82 GPa), which would be more suitable for biomedical applications. (From the SEM and EBSD analysis Mechanical alloying are more homogeneous mixing in comparison to Elemental Blend. Green density (just after compaction) for the elemental blend is more than mechanical alloying so that Sintered Density for Elemental Blend is more than Mechanical Alloying. Due to higher sintered density, porosity is more in case of the elemental blend. Also, due to higher porosity, bending strength is low in case of mechanical alloying with same sintering parameters as Elemental blend alloys. Micro-Hardness value is more in case of elemental blend in comparison to Mechanical Alloying. Elastic modulus is more in case of elemental blend in comparison to mechanical alloying; lower elastic modulus is more suitable for biomedical applications. Grains are more regular and smaller in case of Mechanical alloying which is due to a more homogeneous distribution of the elements in comparison to elemental blend. Powder processing technique is changed from Elemental Blend to Mechanical Alloying due to the improvement of homogeneity of green powders. Mechanical Alloying produced more homogeneous mixture due to high-speed milling with higher Ball to powder ratio (which generates higher energy within the jars and breaks the powders into smaller particles). Different combination of milling speed and milling time performed for our results and the effects of a combination of different parameters observed. / [ES] El titanio y sus aleaciones son los biomateriales principalmente usados debido a sus propiedades únicas como alta resistencia a la corrosión, bajo módulo de elasticidad, alta resistencia mecánica/densidad y buena biocompatibilidad. Las aleaciones Tiβ basadas en el sistema de aleación Ti-Mo muestran propiedades únicas para emplearse como biomateriales. Las aleaciones de Tiβ tienen un módulo de Young más bajo, menor apantallamiento de tensiones y menor reabsorción ósea. Esta investigación tiene como objetivo desarrollar un nuevo material biológico para un implante dental. Esta investigación evalúa la adición de Zr y una pequeña cantidad de Fe sobre la estabilidad de fase β y las propiedades mecánicas de la aleación de Ti-Mo que se utilizará para las aplicaciones médicas. Estas aleaciones se han producido utilizando dos técnicas de pulvimetalurgia (PM); La primera técnica es la combinación de polvos elementales (EB) que se ha seleccionado porque mejora el contacto superficial entre el elemento de aleación y el titanio (Ti) con una ruta rentable. El comportamiento de diferentes composiciones de aleaciones de Ti se evaluó utilizando esta técnica. Las muestras se prensaron uniaxialmente a 600 MPa y se sinterizaron a 1250ºC. La segunda técnica evaluada en este estudio fue la aleación mecánica (MA). Esta técnica tiene una mayor energía de mezcla que la mezcla elemental, lo que mejora el contacto mecánico entre las diferentes partículas y ayuda a la difusión durante el proceso de sinterización. Las muestras se prensaron, igualmente, a 600 MPa inicialmente, y después de evaluar las propiedades mecánicas, la presión de compactación se aumentó a 900 MPa para una mayor densidad en verde de los polvos. Se realizaron diferentes pruebas mecánicas y estudios microestructurales para las muestras de mezcla elemental (EB) y las muestras de aleación mecánica (MA) para garantizar las propiedades adecuadas para aplicaciones biomédicas. Las diferentes pruebas para MA han sido la fluidez, adecuada para conocer el flujo del polvo después del ciclo de molienda, y el análisis granulométrico, adecuado para el análisis de la distribución del tamaño de los polvos. Otras pruebas comunes como la determinación de la densidad por el método de Arquímedes, adecuada para calcular la porosidad de las muestras sinterizadas, el ensayo de flexión a tres puntos para conocer las propiedades mecánicas de las muestras sinterizadas y conocer la energía conservada por las muestras a rotura, y la dureza Vickers de las aleaciones. Mediante ultrasonidos se ha determinado el módulo elástico de las aleaciones. El análisis microestructural se ha realizado mediante microscopía electrónica de barrido y análisis por energías dispersivas de rayos X mediante los que se ha determinado la homogeneidad química de las aleaciones. La difracción de electrones retrodispersados (EBSD) ha permitido obtener la orientación cristalina de cada grano y su tamaño, pues resulta una excelente herramienta para el microanálisis del material. La densidad en verde para aleaciones de mezcla elemental está en el rango del 77.42- 78.11% y para las muestras de aleación mecánica se han obtenido densidades relativas del 74.94-78.58%. La densidad de los sinterizados, obtenida por el método de Arquímedes, está en el rango del 96.88-98.74%, para la mezcla elemental de polvos. La resistencia a la flexión obtenida a partir de la prueba de flexión a tres puntos está en un amplio rango de 666 a 2161 GPa, mientras que para los polvos de aleación mecánica se encuentra en el rango de los 371 a 1597 GPa. El módulo elástico determinado en las aleaciones obtenidas con polvos de mezcla elemental está en el rango de los 95.5 a los 103 GPa, mientras que, en las obtenidas con los polvos mezclados mecánicamente, su módulo elástico oscila entre los 66 y los 82 GPa, que sería más adecuado para un menor apantallamiento de tensiones. La microestructura de las muestras procesadas con polvos elementales con polvos mezclados mecánicamente, presentan diferencias sustanciales con un afinamiento del tamaño de grano con los polvos mezclados mecánicamente, aunque aparecen claramente diferenciadas dos fases distintas y una mayor proporción de fase . Debido a la menor densidad de las muestras procesadas con los polvos mezclados mecánicamente, estas presentan una menor resistencia mecánica y a su vez una menor plasticidad. Por ello se opta por utilizar técnicas de sinterización de alta densificación como el Spark Plasma Sinterirng (SPS) a pesar de lo cual no obtenemos mejora en el comportamiento mecánico de las mismas. Sin embargo, en los ensayos de corrosión y liberación de iones si se ha encontrado una sustancial mejor en las muestras obtenidas por SPS. / [CA] El titani i els seus aliatges són utilitzats, principalment, com a biomaterials per les seves propietats úniques com alta resistència a la corrosió, baix mòdul d'elasticitat, alta resistència mecànica específica i bona biocompatibilitat. Els aliatges β Ti basades en el sistema d'aliatge Ti-Mo mostren propietats úniques per a emprar-se com biomaterials. Els aliatges de β Ti tenen un mòdul de Young més baix, menor apantallament de tensions i menor reabsorció òssia. Aquesta investigació té com a objectiu desenvolupar un nou material biocompatible per a la seva aplicació com a implants dentals. Aquesta investigació avalua l'addició de Zr i petites quantitats de Fe sobre l'estabilitat de la fase β i les propietats mecàniques dels aliatges Ti-Mo que s'utilitzaran per a aplicacions biomèdiques. Aquests aliatges s'han produït utilitzant dues tècniques pulvimetalúrgiques (PM); La primera tècnica és la mescla elemental de pols (EB) que s'ha seleccionat perquè millora el contacte superficial entre l'element d'aliatge i el titani (Ti) amb una ruta rendible. El comportament de diferents composicions d'aliatges de Ti s'ha avaluat utilitzant aquesta tècnica. Les mostres es van premsar uniaxialment a 600 MPa i es sinteritzaren a 1250ºC. La segona tècnica avaluada en aquest estudi va ser l'aliatge mecànica (MA). Aquesta tècnica té una major energia de mescla que la mescla elemental, el que millora el contacte mecànic entre les diferents partícules i ajuda a la difusió durant el procés de sinterització. Les mostres es van premsar a 600 MPa inicialment, i després d'avaluar les propietats mecàniques, la pressió de compactació es va augmentar a 900 MPa per a una major densitat en verd de les pols. Es van realitzar diferents proves mecàniques i estudis microestructurals per a mostres de mescla elemental (EB) i per a mostres d'aliatge mecànica per garantir les propietats adequades per a aplicacions biomèdiques. Les diferents proves per MA són la prova de fluïdesa (adequada per conèixer el flux de la pols després del cicle d'aliatge mecànica) i l'anàlisi granulomètric (la prova és adequada per a l'anàlisi de distribució de la mida de les pols). S'han realitzat altres proves comunes com la prova d'Arquímedes, adequada per a calcular la porositat de les mostres sinteritzades. La prova de flexió de tres punts és adequada per conèixer la resistència a la flexió de les mostres sinteritzades i conèixer l'energia conservada per les mostres durant el seu trencament. Mitjançant ultrasons s'ha determinat el mòdul elàstic dels aliatges i la duresa s'ha realitzat per calcular la duresa Vickers de l'aliatge. S'ha realitzat l'anàlisi per SEM per conèixer la microestructura i l'anàlisi per EDX (mitjançant el qual es coneixeria la mescla adequada de l'element d'aliatge amb l'element central). EBSD (difracció d'electrons retro dispersats) també es realitza per a un més complet anàlisi sobre la microestructura, orientacions cristal·lines, mida de gra, mescla de diferents elements en els aliatges. EBSD és una excel·lent eina per al microanàlisi del material. De la secció de resultats es determinen la densitat en verd de l'aliatge, fluïdesa de la pols mòlta, granulometria de la pols, densitat de l'aliatge sinteritzada (prova d'Arquímedes), resistència a la flexió i mòdul a flexió de l'aliatge, mòdul elàstic per ultrasons, microestructura de l'aliatge (per SEM i EBSD). La densitat en verd per als aliatges de mescla elemental està en el rang dels 77.42-78.11%, mentre que per a les mostres d'aliatge mecànica van ser d'un 74.94-78.58%. La densitat dels sinteritzats, obtinguda pel mètode d'Arquímedes, està en el rang dels 96.88-98.74%, per la mescla elemental de pols. La resistència a la flexió obtinguda a partir de la prova de flexió de tres punts es troba en el rang dels 666-2161 MPa, mentre que per a les mostres de aliat mecànic el seu rang és molt ampli, des dels 371 als 1597 MPa. A partir de l'assaig d'ultrasons, el mòdul elàstic determinat per als aliatges de mescla elemental està en el rang de 95.5 a 103 GPa i per a les sinteritzades amb pols aliats mecànicament, es troba en el rang dels 66-82 GPa, que seria més adequat per a aplicacions biomèdiques. A partir de les anàlisis per SEM i EBSD, es confirma que l'aliatge mecànica és una mescla més homogènia en comparació amb la mescla elemental dels pols. La densitat en verd (just després de la compactació) per a la mescla elemental és més gran que en l'aliatge mecànica, de manera que la densitat sinteritzada per a la mescla elemental és major igualment que en l'aliatge mecànica. A causa d'una major densitat dels sinteritzats, la porositat és menor en el cas de la mescla elemental. A més, a causa d'una major porositat, la resistència a la flexió és baixa en cas d'aliatge mecànica amb els mateixos paràmetres de sinterització que els aliatges de mescla elemental. El valor de microduresa és major en el cas de la mescla elemental en comparació amb l'aliatge mecànica. El mòdul elàstic també resulta més gran en el cas d'una mescla elemental comparat amb l'aliatge mecànica, que en aquest cas resultaria més adequat per a aplicacions biomèdiques. Els grans són més regulars i més petits en el cas de l'aliatge mecànica, a causa d'una distribució més homogènia dels elements en comparació amb la mescla elemental i als efectes de recristal·lització durant la sinterització. L'aliatge mecànica va produir una mescla més homogènia dels elements d'aliatge, a causa de la mòlta a alta velocitat amb una relació boles/pols més alta que genera una major energia dins de les gerres i obté partícules de pols més petites. S'ha realitzat una combinació de diferents velocitats i temps de mòlta, optimitzant aquests paràmetres per a les nostres aliatges. / Mohan, P. (2020). Development of new high performance Titanium alloys with Fe-addition for dental implants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147859
293

An investigation of the interfacial characteristics of nitinol fibers in a thermoset composite

Jones, Wendy Michele 30 December 2008 (has links)
A heightened interest in intelligent material systems has occurred in recent years due to their remarkable adaptive abilities. Intelligent materials systems, which contain sensors and actuators coupled by means of active control, frequently utilize composite materials as the skeletal structure. In order for composite materials to be utilized in intelligent material systems to their utmost capability, many material properties, including the interfacial shear strength between the embedded sensor or actuator and the matrix must be thoroughly understood.. Investigations were performed in order to examine the effects of different variables on the interfacial characteristics between a nitinol fiber and a composite matrix. First, rough, clean fiber surfaces were found to provide the best adhesion to the matrix due to the mechanical interaction of the matrix with the rough surface finish. Second, it was determined that the interfacial shear strength is not dependent upon embedded fiber length. Third, a very small diameter fiber will break before pulling out of the matrix, but overall, large fibers have a greater interfacial strength. Fourth, it was found that the initial prestrain on the fiber during processing had no effect on the interfacial shear strength of the fiber to the matrix. Fifth, it was determined that fatigue does not degrade the shear strength of any of the different initial pres trains. Finally, it was found that a coating that does not adhere well to the fiber neither macroscopically degrades nor enhances interfacial strength. / Master of Science
294

Additive Manufacturing of Metastable Beta Titanium Alloys

Yannetta, Christopher J. 08 1900 (has links)
Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
295

The Role of Misfit Strain and Oxygen Content on Formation and Evolution of Omega Precipitate in Metastable Beta-titanium Alloys

Hendrickson, Mandana 12 1900 (has links)
β-Ti alloys are widely used in airframe and biomedical applications due to their high ductility, high hardenability, and low elastic modulus. The phase transformations in β-Ti alloys are rather complex due to formation of metastable phases during various thermo-mechanical treatments. One such critical metastable phase, the hexagonal omega (ω) phase, can form in β-Ti alloys under quenching from the high temperature β phase and/or isothermal aging at intermediate temperature. Despite a substantial amount of reported works on the ω phase, there are several critical issues related to the ω formation need to be resolved, e.g. role of alloying elements and oxygen content. Therefore, this dissertation has attempted to provide insights into ω transformation in low misfit (Ti-Mo) and high misfit (Ti-V) binary systems as well as multicomponent (Ti-Nb-Zr-Ta) alloys. The evolution of ω structure, morphology and composition from the early stage (β-solution+quenched) to later stages after prolonged aging are systematically investigated by coupling transmission electron microscopy (TEM), atom probe tomography (APT) and high-energy synchrotron X-ray diffraction techniques. The influence of aging temperature and duration on characteristic of ω phase in Ti-Mo, and Ti-V alloys is addressed in details. It is found that compositional changes during aging can alter the structure, size and morphology of ω precipitates. In low misfit alloys, the ellipsoidal morphology of ω phase was retained during isothermal aging, while in high misfit alloys it changed from ellipsoidal to cuboidal morphology after prolonged aging. Secondly, ω transformation in biomedical Ti-Nb-Zr-Ta alloy is probed in which the micro-hardness was sensitive to microstructural changes. Furthermore, the evolution of oxygen concentration in ω precipitates during various aging conditions in binary Ti-Mo and Ti-V alloys are reported. It has been accepted that interstitial elements such as oxygen can largely alter mechanical behavior and the microstructure of Ti-alloys. Recently, oxygen is intentionally added to some biomedical alloys to improve their performances. However, a careful understanding of the effect of oxygen on ω phase transformation is still lacking in the literature. In this work, the role of oxygen on ω phase formation in biomedical TNTZ alloys is investigated. Although it is traditionally accepted that oxygen suppresses ω transformation, our observations revealed contradictory results during isothermal aging of TNZT alloys. The results of our investigations provide a novel insight into understanding the effect of interstitial elements on metastable phase transformation in β-Ti alloys. It is concluded that depending upon the nature of alloying elements and/or the applied thermo-mechanical treatments, oxygen may play a different role in ω transformations.
296

An Initial Study of Binary and Ternary Ti-based Alloys Manufactured Using Laser Engineered Net Shaping (LENSTM)

Gray, Alyn M. 12 1900 (has links)
In this study an initial assessment of the composition – microstructure – property relationships in binary and ternary Ti – based systems are made possible using LENSTM technology. Laser Engineering Net Shaping (LENSTM), a rapid prototyping, directed laser deposition methodology of additive manufacturing (AM) was used to create bulk homogenous specimens that are compositionally graded. Compositionally graded specimens were made possible by incorporating elemental blends of powder during the LENSTM process. While there have been numerous studies assessing the influence of common elements (e.g., V, Mo, Al, and Cr) on the resulting microstructure in titanium alloys, other elements have been neglected. A systematic study of the Ti – Fe – Al ternary system based upon varying compositions of the eutectoid former, Fe with Al to stabilize the a and b phases respectively has also been neglected. This research effort focuses on exploiting the LENSTM process by rapidly assessing the composition – microstructure – property relationships in a combinatorial approach for the Ti – W, Ti – Fe, and Ti – Fe – Al systems. Compositionally graded specimens of Ti – xW (0<x<40wt.%(14.79at.%)), Ti – xFe (0<x<35wt.%(36.37at.%)), and Ti – xFe – yAl (0<x<40wt.%(36.37at.%)), y=5,10, 15wt.%) have been heat treated to also assess the influence of thermal history on microstructural features such as phase composition and volume fraction. Lastly, a Ti – xMo (0<x<40wt.%(24.96at.%)) compositionally graded specimen was deposited to re-assess the Mo-equivalency nature of W, as well as assess the role of phase separation in microstructural evolution at temperatures above and below the invariant point (~695°C) of the Ti – W binary system.
297

Effect of Friction-stir Processing on the Wear Behavior of Titanium (Ti-1Al-8V-5Fe) and Stainless Steel (A-286) Alloys

Tinubu, Olusegun Olukunle 05 1900 (has links)
The effect of friction stir processing (FSP) on the mechanical wear behavior was investigated for Ti-1Al-8V-5Fe (Ti-185) and stainless steel (Incoloy® A-286) alloys. The Ti-185 and A-286 alloys were tested in different processing conditions, including as rolled (AR), AR+FSP, and AR+FSP+aged. A high frequency reciprocating rig was used to simulate fretting-type wear of these alloys at room temperature. The Vickers micro-hardness and wear rates were calculated and compared for each processing condition. It was determined that along with increasing hardness in the stir zones, FSP resulted in improved wear resistance for both alloys. Specifically, wear rates in the stir zones were reduced to lowest values of 1.6 x 10-5 and 5.8 x 10-7 mm3/N·m for the AR+FSP+aged Ti-185 and A-286 alloys, respectively, despite lower hardness for A-286 alloy. Mechanistic studies were conducted to determine the reason behind these improvements in wear resistance and the effect of FSP on the microstructural evolution during wear. For the Ti-185 alloy, x-ray diffraction revealed that there was a phase transformation from β-Ti (AR+FSP) to α-Ti (AR+FSP+aged). This phase decomposition resulted in the harder and stiffer Ti phase responsible for lowering of wear rate in Ti-185. While x-ray diffraction confirmed the A-286 alloy retains its austenitic structure for all conditions, scanning electron microscopy revealed completely different wear track morphology structures. There was increased coarse abrasion (galling) with the AR+aged A-286 alloy compared to the much finer-scale abrasion with the AR+FSP+aged alloy, which was responsible for smaller and less abrasive wear debris, and hence lower wear rate. Furthermore, cross-sectional focused ion beam microscopy studies inside the stir zone of AR+FSP+aged A-286 alloy determined that a) increased micro-hardness was due to FSP-induced microscopic grain refinement, and b) the corresponding wear rate decrease was due to even finer wear-induced grain refinement. With both effects combined, the level of damage and surface fatigue wear was suppressed resulting in lowering of the wear rate. In contrast, the absence of FSP-induced grain refinement in the AR+aged A-286 alloy resulted in lower hardness and increasing wear rate. In addition, micro-Raman spectroscopy inside the stir wear zone determined that the wear debris contained metal oxides of Fe3O4, Cr2O3, and NiO, but were a consequence and not the cause of low wear. Overall, FSP of titanium and stainless steel alloys resulted in lowering of wear rates suggesting it is a viable surface engineering technique to target and mitigate site-specific wear.
298

An investigation into the relationship between the hydrogen storage properties and the microstructure of mechanically alloyed mixtures of titanium, magnesium, and nickel

Lomness, Janice K. 01 January 2001 (has links)
The hydrogen storage properties and the microstructurc:s of titanium, magnesium, nickel mixtures mechanically alloyed using ball-to-powder mass ratios of 20: 1, 40: 1, and 70: 1 have been studied. Materials have been produced that exhibit the ability to absorb moderate to significant amounts of hydrogen and show significant changes in the microstructure as a result of the ball-milling process. The hydriding/dehydriding characteristics of samples of the Ti-Mg-Ni mixture were determined. The thermal analysis results obtained using differential scanning calorimetry, as well as the hydrogen uptake onset temperatures, weight percent hydrogen and hydrogen-to-metals ratios are presented. The microstructural characterization of mechanically alloyed Ti-Mg-Ni mixtures was performed using x-ray diffraction (XRD), scanning electron microscopy/x-ray dispersive spectrometry (SEM/XEDS), focus ion­beam milling (FIB), and Transmission electron microscopy/x-ray dispersive spectrometry. Significant changes were observed in the hydrogen storage characteristics and the rnicrostructures of Ti-Mg-Ni mixtures mechanically alloyed using the ball-to-powder mass ratios of 20: 1 and 70: 1. The hydrogen storage capacity of the material alloyed with a ball-to-powder mass ratio of20:1 was 3.5 wt%. The Ti-Mg-Ni mixture mechanically alloyed using a ball-to-powder mass ratio of 70: 1 exhibited an extraordinary hydrogen s torage capacity. The resulting material was capable of absorbing l I wt%. ln addition, the onset temperature for hydriding decreased as the ball-to-powder mass ration increased. XRD analysis shows that only the elemental planes of Ti, Mg, Ni are present in the ball-milled materials, where the suppression of the Mg reflections during ball-milling was observed. However, TEM results indicate that the complex arrangement of phases on the surface of the original Mg particle, indicating that XRD may not be a suitable technique for the study of these materials due to sampling limitations. A convoluted microstructure with regions of heavy deformation was observed for the mechanically alloyed Ti-Mg-Ni mixture. Brittle fragments of Ti and Ni were incorporated into the Mg. The microstructure of the mechanically alloyed material using a ball-to-powder mass ratio of 70: 1 exhibited a more refined microstructure than the material alloyed at a 20: 1 ball-to-powder mass ratio. The data suggest that the convoluted microstructures may play an important role in the ability of this mixture to absorb hydrogen. It appears that the convoluted microstructure may provide pathways for hydrogen diffusion in the Mg matrix. Incorporation of the Ti and Ni into the microstructure may provide catalytic sites within the matrix to aid in the diffusion of hydrogen in the Mg matrix, and/or may react with the hydrogen directly to fonn a metal hydride.
299

Desempenho em fadiga e corrosão-fadiga da liga Ti-35Nb-2,5Sn laminada a quente aplicada como biomaterial / Fatigue and corrosion-fatigue performance of the hot rolled Ti-35Nb-2,5Sn alloy applied as a biomaterial

Andrade, Carlos Eduardo Celestino de 27 September 2013 (has links)
Metallic materials have considerable importance in biomedical tissue reconstruction structural failed. Currently, the production of new alloys, titanium has been encouraged for biomedical use so as to reduce limitations and elastic modulus of alloy marketed cytotoxicity, in particular Ti-6Al-4V. Alloys Ti-Nb-Sn are an alternative for this purpose. In the current study, alloy Ti-35Nb-2,5SN were obtained by melting the arc, solubilized at 1000 ° C for 12 hours, hot-rolled with 40% reduction in water and cooled. The content of nitrogen and oxygen was verified by melting in an atmosphere of inert gas. The microstructures were characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction. The characteristics in fatigue and corrosion - fatigue alloy were determined according to the guidelines noted in ASTM E466. Specimens were machined and fatigue SN curves obtained in air and in an environment with 0.9% NaCl. The micromechanics of fracture were analyzed by scanning electron microscope (SEM). The results were compared with published data for beta stabilized alloys and discussed the potential application of new alloys. / Os materiais metálicos biomédicos apresentam notável importância na reconstrução de tecidos estruturais que falharam. Atualmente, a produção de novas ligas de titânio tem sido incentivada para uso biomédico a fim de reduzir as limitações quanto ao módulo de elasticidade e citotoxicidade das ligas comercializadas, em particular a liga Ti-6Al-4V. As ligas de Ti-Nb-Sn surgem como alternativa para esta finalidade. No estudo atual, ligas de Ti-35Nb-2,5Sn foram obtidas por fusão a arco voltaico, solubilizadas, laminadas a quente com 40 % de redução e resfriadas em água. O teor de nitrogênio e oxigênio foi verificado por fusão em ambiente de gás inerte. As microestruturas foram caracterizadas por microscopia ótica, microscopia eletrônica de varredura (MEV) e difração de raios-X. Corpos de prova de fadiga foram usinados e submetidas a ensaio para obtenção de curvas S-N ao ar e em ambiente com 0,9 % de NaCl e baixa frequência. Os micromecanismos de fratura foram analisados em microscópio eletrônico de varredura (MEV). Os resultados foram comparados com os dados publicados na literatura para outras ligas beta estabilizadas e foram discutidos os potenciais de aplicação das novas ligas. Os resultados dos ensaios mostraram que o limite de fadiga tende a coincidir com a tensão limite para o início do movimento de discordâncias.
300

Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium Chromium Alloys

Thomas, Jonova 05 1900 (has links)
A compositionally graded Ti-xCr (10≤x≤30 wt%) alloy has been fabricated using Laser Engineered Net Shaping (LENSTM) to study the microstructural phase evolution along a compositional gradient in both as-deposited and heat treated conditions (1000°C followed by furnace cooling or air cooling). The alloys were characterized by SEM BSE imaging, XRD, EBSD, TEM and micro-hardness measurements to determine processing-structure-property relations. For the as-deposited alloy, α-Ti, β-Ti, and TiCr2 (C15 Laves) phases exist in varying phase fractions, which were influential in determining hardness values. With the furnace cooled alloy, there was more homogeneous nucleation of α phase throughout the sample with a larger phase fraction of TiCr2 resulting in increased hardness values. When compared to the air cooled alloy, there was absence of wide scale nucleation of α phase and formation of ω phase within the β phase due to the quicker cooling from elevated temperature. At lower concentrations of Cr, the kinetics resulted in a diffusionless phase transformation of ω phase with increased hardness and a lower phase fraction of TiCr2. In contrast at higher Cr concentrations, α phase separation reaction occurs where the β phase is spinodally decomposed to Cr solute-lean β1 and solute-rich β2 resulting in reduced hardness.

Page generated in 0.2277 seconds