91 |
Impact of material attributes & process parameters on critical quality attributes of the amorphous solid dispersion products obtained using hot melt extrusionSabnis, Aniket D. January 2019 (has links)
The feasibility of hot melt extrusion (HME) was explored for development of amorphous solid dispersion systems. Controlled release formulations were developed using a cellulose based derivative, AffinisolTMHPMC 100cP and 4M grades. BCS class II drugs ibuprofen and posaconazole were selected due to their difference in glass transition temperature and lipophilicity.
This study focused on investigation of the impact the material attributes and process parameters on the critical quality attributes in preparation of amorphous solid dispersions using hot melt extrusion. The critical quality attributes were sub divided into three main attributes of material, process and product.
Rheology of ibuprofen-Affinisol 100cP from melt phase to extrudate phase was tracked. A partial factorial design was carried out to investigate the critical parameters affecting HME. For optimisation of 40%IBU-Affinisol 100cP blends, a feed rate of 0.6kg/hr, screw speed of 500rpm and screw configuration with two mixing elements were found to be optimum for single phase extrudates. ATR-FTIR spectroscopy was found to be an indirect technique of choice in predicting the maximum ibuprofen drug load within extrudates. Prediction was based on the prepared extrudates without charging them to stability conditions.
An alternative strategy of incorporation of di-carboxylic acids to increase the dissolution of posaconazole-Affinisol 4M blends was investigated. Succinic acid and L- malic acid incorporation was found to increase the dissolution of posaconazole. Although, the extrudates crystallised out quicker than the naïve posaconazole-Affinisol 4M, but free posaconazole formed eutectic and co-crystal with succinic and L-malic acid within extrudates. This lead to an increase in dissolution of the extrudates compared to day 0.
|
92 |
Satellite Mapping of Past Biosolids (Sewage Sludge) and Animal Manure Application to Agriculture Fields in Wood County, OhioWang, Jingjing 30 July 2009 (has links)
No description available.
|
93 |
DEFINING MURINE RETROVIRAL COMPONENTS AND VIRAL LIFE CYCLE EVENTS REQUIRED FOR INDUCING SPONGIFORM MOTOR NEURON DEGENERATIONLi, Ying 21 July 2008 (has links)
No description available.
|
94 |
SURFACE RESISTANCE OF HIGH TEMPERATURE SUPERCONDUCTOR BY THE RESONANT CAVITY METHODKARKI, BHISHMA R. 02 July 2004 (has links)
No description available.
|
95 |
Identification of Sewage Sludge Injection Application on Harvested Agricultural Fields Using Landsat TM DataJiang, Yitong January 2010 (has links)
No description available.
|
96 |
Landscape Level Evaluation of Northern Bobwhite Habitats in Eastern Virginia Using Landsat TM ImagerySchairer, Garrett L. 22 May 1999 (has links)
Northern bobwhite (<I>Colinus virginianus</I>) are important game birds associated with early successional habitats across the southeastern United States. In the past 30+ years there has been an almost universal decline in bobwhite population numbers despite a long history of management. The Virginia Bobwhite Quail Management Plan was implemented in 1996 to slow and stop the current population declines in Virginia. Virginia Department of Game and Inland Fisheries (VDGIF) personnel identified a lack of knowledge about the broad-scale, landscape level habitats in eastern Virginia. A large scale land cover map along with a detailed understanding of the spatial arrangements of bobwhite habitats will not only aid Virginia's management plan, but also allow focused efforts by our wildlife managers. I explored the possibilities of using remote sensing to map various habitats important to bobwhite. I compared several classification algorithms applied to Landsat TM imagery prior to selecting the classification method that best delineated early successional habitats. After method selection, a classified land cover map for the Coastal Plain and Piedmont of Virginia was generated.
Using the classified images available from the first part of the study and 4 years of bobwhite call count data, I studied the landscape level habitat associations of bobwhite. A number of landscape metrics were calculated for the landscapes surrounding bobwhite call count routes and were used in two modeling exercises to differentiate between high and low bobwhite populations. Both pattern recognition (PATREC) and logistic regression models predicted levels of bobwhite abundance satisfactorily for the modeled (84.0% and 96.0% respectively) and independent (64.3% and 57.1%, respectively) data sets. The models were applied to remotely-sensed habitat maps to develop prediction maps expressing the quality of a landscape for supporting a high population of bobwhite based on existing land cover.
Finally, I explored the possibility of eliminating the time consuming and very costly step of classifying a remotely-sensed image prior to examining its quality for a particular species. Using raw Landsat TM imagery and bobwhite call count data, I developed predictive logistic regression models expressing the quality of a landscape surrounding a pixel. The first model predicted the probability of the landscape supporting a high bobwhite population. Due to a number of stops with an average of zero, I was also able to generate a model that expressed the probability of the landscape supporting any number of bobwhite. This method also satisfactorily predicted high/low population and presence/absence for the modeled data (65.7% and 83.1%, respectively) and independent data (65.3% and 83.7%, respectively). The method described will allow for rapid assessment of our wildlife resources without having to classify remotely-sensed images into habitat classes prior to analyses. / Master of Science
|
97 |
Monitoring Property Boundaries for the Appalachian National Scenic Trail Using Satellite ImagesHutchings, James Forrest 06 May 2005 (has links)
The Appalachian National Scenic Trail is a unit of the National Park System created by the National Trails Act of 1968. Commonly referred to as the Appalachian Trail, or the AT, this National Park has some of the longest boundaries of any park. The AT is routed more than 2000 miles along the mountains of the eastern United States. The land purchased for the protection of the AT creates a separate boundary on each side of the trail. Monitoring these boundaries for intrusions or encroachments is a difficult and time-consuming task when done totally by field methods. This thesis presents a more efficient and consistent monitoring process using remote sensing data and change detection algorithms. Using Landsat TM images, Normalized Difference Vegetation Index (NDVI), and image difference change detection, this research shows that major boundary encroachments can be detected. Detection of sub-pixel vegetation index decreases identifies specific locations for field inspection. Assuming low cost multispectral Landsat imagery is available, simple NDVI difference calculation allows this technique to be applied to the entire AT one or more times per year. This procedure would improve the response time for encroachment mediation. The producer's accuracy for finding possible encroachments was 100 percent and the consumer's accuracy for possible encroachments indicated was 78.3 percent. Due to limited image availability, this study only examines change between one pair of Landsat images. Further refinement of these techniques should investigate other Landsat images at other times. Use of other remote sensing systems and change detection algorithms could be the focus of further research. / Master of Science
|
98 |
Synthesis of Bio-Dimethyl Ether Based on Carbon Dioxide-Enhanced Gasification of Biomass: Process Simulation Using Aspen PlusParvez, A.M., Mujtaba, Iqbal, Hall, P., Lester, E.H., Wu, T. 20 January 2016 (has links)
Yes / Process simulation of a single-step synthesis of DME based on CO2-enhanced gasification of rice straw was conducted using Aspen PlusTM. The process consists of gasification unit, heat recovery unit, gas purification unit, single-step DME synthesis, and DME separation unit. In the simulation, highly pure DME was produced by the control of CO2 concentration in syngas to a very low level prior to synthesis. A gasification system efficiency of 36.7% and CO2 emission of 1.31 kg/kg of DME were achieved. Bio-DME production based on CO2-enhanced gasification of biomass was found to be more cost-effective as it required 19.6% less biomass than that of DME production based on conventional biomass gasification. The performance and environmental benefits of the proposed process could be further improved by the utilization of unreacted gases and the handling of CO2 generated via incorporating poly-generation concept or carbon storage, which could also potentially improve process economics. / Ningbo Bureau of Science and Technology; Innovation Team Scheme; Major R&D Programme; Provincial Innovation Team on the Commercialisation of SOx and NOx Removal Technologies; University of Nottingham Ningbo China
|
99 |
Comportement en fretting de composite CFRP HexTOOL TM et de sa matrice BismaléimideTerekhina, Svetlana 25 March 2011 (has links)
Le composite HexTOOL TM à base de la matrice bismaléimide renforcé par des fibres de carbone fait partie d’une famille de matériaux composites récemment utilisés pour des applications à haute température. Vu la part croissante de l’utilisation de ce matériau dans les domaines industriels, il est inconcevable de ne pas s’intéresser aux endommagements (fissuration et usure…), engendrés par des sollicitations de contact, en particulier vis-à-vis de matériaux métalliques. L’une des sources de ces endommagements est associée aux vibrations apparaissant lors de sollicitations de petits débattements (fretting).L’objectif de ce travail est de développer une méthodologie expérimentale, permettant d’expertiser le comportement à long terme en fretting du composite HexTOOL TM. Deux résultats essentiels sont mis en avant au cours de cette étude. Le premier concerne l’étude de l’endommagement de la matrice bismaléimide (BMI). Pour cela, les conditions d’amorçage et de propagation des fissures ainsi que l’usure ont été analysées en fonction des conditions de sollicitation locale. Le deuxième résultat est le développement d’une stratégie d’analyse de l’usure du composite HexTOOL TM. L’orientation locale des fibres a une influence notable sur le phénomène de l’usure du composite. Des essais effectués sous des niveaux de force normale et des conditions de température différentes ont mis en évidence une meilleure résistance à l’usure dans les zones où les fibres sont parallèles à la direction de glissement. En outre, des essais menés en fonction de la température ont montré l’influence de la matrice et du troisième corps sur la cinétique d’usure. / Carbon fibre/bismaleimide composite or HexTOOL TM is one of a family of composite materials recently developed for high temperature applications. Given the increasing use of this material in industrial fields, it is interesting to study damage (cracking and wear ...), caused by contact stresses, in particular in the contact with metallic materials. One source of this damage is associated to vibration occurring when a small displacement amplitude oscillatory motion is conducted (fretting). The objective of this work is to develop an experimental methodology, allowing the analyzing of the long-term behavior of composite HexTOOLTM under fretting conditions.Two main results are put ahead during this research. The first concerns the study of damage of the bismaleimide matrix. Two types of damage, depending on local stress conditions: the Cracking and Wear, were analyzed. These experimental data conditions were used for the fretting maps to better visualize the behavior of the composite matrix. The second result is the development of a wear analysis strategy of the composite HexTOOLTM. Influence of the local fibre orientation on the wear kinetics of composite is here presented. Tests performed under constant normal force and different temperature conditions show the best wear resistant performance of composite with parallel fibre orientation to the sliding direction. In addition, the influence of the matrix behaviour (viscous response) and the third body on the wear is shown.
|
100 |
Implementação de uma rede neural em ambiente foundation fieldbus para computação de vazão simulando um instrumento multivariávelBorg, Denis 20 June 2011 (has links)
Esta dissertação propõe o desenvolvimento de uma rede neural artificial (RNA) direcionada a ambientes foundation fieldbus para realização do cálculo de vazão em dutos fechados. Para tanto, a metodologia proposta utiliza-se de medidas de pressão, temperatura e pressão diferencial, as quais normalmente estão disponíveis em plantas industriais. A principal motivação do emprego das redes neurais reside no seu baixo custo e simplicidade de implementação, o que possibilita o emprego de apenas blocos fieldbus padrões tornando a metodologia independente do fabricante. Foi utilizada uma rede perceptron multicamadas com algoritmo de treinamento backpropagation de Levenberg-Marquardt. O treinamento foi realizado numa programação elaborada para o software Matlab TM. A arquitetura da rede neural foi determinada por métodos empíricos variando-se o número de neurônios e de camadas neurais até se atingir um erro aceitável na prática. Após esses treinamentos foi desenvolvida uma programação para realizar os cálculos de vazão em um ambiente foundation fieldbus utilizando-se para tanto o software DeltaV TM do fabricante Emerson Process Management. Foram obtidos resultados com erro relativo médio de valor de vazão em torno de 1.43% para um primeiro cenário utilizando uma placa de orifício e ar como fluido, e de 0,073% para um segundo cenário utilizando uma placa de orifício e gás natural como fluido, com relação aos valores obtidos através do instrumento multivariável 3095MV TM do fabricante Rosemount. Os valores de erro encontrados validam o método desenvolvido nessa dissertação. / This dissertation proposes the development of an artificial neural network (ANN) directed to foundation fieldbus environment for calculation of flow in closed ducts. The proposed methodology uses measurements of pressure, temperature and differential pressure, which are usually available in industrial plants. The main motivation of the use of neural networks lies in their low cost and simplicity of implementation, which allows the use of standard fieldbus blocks by just making the method independent of the manufacturer. It was used a multilayer perceptron network with backpropagation training and algorithm from Levenberg-Marquardt. The training was programmed in the software Matlab TM. The architecture of the ANN was determined by empirical methods by varying the number of neurons and neural layers until it reaches an acceptable error. After such trainings, it was developed a program to perform the flow calculations in an foundation fieldbus environment using Emerson Process Management\'s DeltaV TM software. The results were obtained with an average relative error of flow rate of 1.43% for the first scenario using an orifice plate and air as a process fluid, and 0.073% for a second scenario using an orifice plate and natural gas as the fluid related to the values obtained from Rosemount 3095MV TM multivariable instrument. The values of error found validate the method developed in this dissertation.
|
Page generated in 0.021 seconds