• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Oculus Keratograph 5M Tear Film Scans on Eyes Wearing Contact Lenses

Norris, Taylor N. 04 October 2021 (has links)
No description available.
2

Spectroscopy of selected metal-containing diatomic molecules

Gordon, Iouli January 2005 (has links)
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground <em>X</em><sup>7</sup>&sigma;<sup>+</sup> electronic state. The vibration-rotation bands from <em>v</em> = 1 to 0 to <em>v</em> = 3 to 2 for MnH, and from <em>v</em> = 1 to 0 to <em>v</em> = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm<sup>-1</sup>. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant <em>&omega;<sub>e</sub></em> for MnH was found to be 1546. 84518(65) cm<sup>-1</sup>, the equilibrium rotational constant <em>B<sub>e</sub></em> was found to be 5. 6856789(103) cm<sup>-1</sup> and the equilibrium bond distance <em>r<sub>e</sub></em> was determined to be 1. 7308601(47) Å. <br /><br /> New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 <em>µ</em>m region using a Fourier transform spectrometer. Many bands were observed for the <em>A</em><sup>'3</sup>&phi;-<em>X</em><sup>3</sup>&phi; electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- <em>X</em><sup>3</sup>&phi;<sub>3</sub> and [13. 3]4-<em>X</em><sup>3</sup>&phi;<sub>4</sub> transitions in the spectrum of CoD. Analysis of the transitions with &delta;&omega; = 0, ±1 provided more accurate values of spin-orbit splittings between &omega; = 4 and &omega; = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. <br /> <br /> The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm<sup>-1</sup> were recorded at a resolution of 0. 04 cm<sup>-1</sup>. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the <em>X</em><sup>1</sup>&sigma;<sup>+</sup> ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. <br /><br /> Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, &lambda;, and Fermi contact parameter, <em>b</em><sub>F</sub>, in the ground <em>X</em><sup>9</sup>&sigma;<sup>-</sup> electronic state were estimated for the <sup>151</sup>EuH and <sup>153</sup>EuH isotopologues. <br /><br /> Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.
3

Spectroscopy of selected metal-containing diatomic molecules

Gordon, Iouli January 2005 (has links)
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground <em>X</em><sup>7</sup>&sigma;<sup>+</sup> electronic state. The vibration-rotation bands from <em>v</em> = 1 to 0 to <em>v</em> = 3 to 2 for MnH, and from <em>v</em> = 1 to 0 to <em>v</em> = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm<sup>-1</sup>. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant <em>&omega;<sub>e</sub></em> for MnH was found to be 1546. 84518(65) cm<sup>-1</sup>, the equilibrium rotational constant <em>B<sub>e</sub></em> was found to be 5. 6856789(103) cm<sup>-1</sup> and the equilibrium bond distance <em>r<sub>e</sub></em> was determined to be 1. 7308601(47) Å. <br /><br /> New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 <em>µ</em>m region using a Fourier transform spectrometer. Many bands were observed for the <em>A</em><sup>'3</sup>&phi;-<em>X</em><sup>3</sup>&phi; electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- <em>X</em><sup>3</sup>&phi;<sub>3</sub> and [13. 3]4-<em>X</em><sup>3</sup>&phi;<sub>4</sub> transitions in the spectrum of CoD. Analysis of the transitions with &delta;&omega; = 0, ±1 provided more accurate values of spin-orbit splittings between &omega; = 4 and &omega; = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. <br /> <br /> The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm<sup>-1</sup> were recorded at a resolution of 0. 04 cm<sup>-1</sup>. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the <em>X</em><sup>1</sup>&sigma;<sup>+</sup> ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. <br /><br /> Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, &lambda;, and Fermi contact parameter, <em>b</em><sub>F</sub>, in the ground <em>X</em><sup>9</sup>&sigma;<sup>-</sup> electronic state were estimated for the <sup>151</sup>EuH and <sup>153</sup>EuH isotopologues. <br /><br /> Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.
4

Application development for automated positioning of 3D-representations of a modularized product

Larsson, Christian January 2013 (has links)
This thesis presents an application that performs positioning of modules automatically based on given data for every module, and the development of it. The basis of the application is from a previous thesis code. On top of that code, more features and error handling has been added, as well as fixes for various bugs. A stress test has been performed and further development possibilities are being presented. The thesis work was carried out at Toyota Material Handling Mjölby (TMH) and was made in parallel with another thesis by Fredrik Holden who was generating data for the application. For a complete understanding of the theory and background, please also read Holden’s thesis report “Development of method for automated positioning of 3D-representations of a modularized product”, as well as the former thesis  ”Analysis for Automated Positioning of 3D-representation of a Modularized product””. / Detta examensarbete presenterar en applikation som positionerar moduler automatiskt med hjälp av given data för varje modul, samt utvecklingen av applikationen. Applikationen bygger på kod från ett tidigare examensarbete. Ovanpå den koden har flera egenskaper och felhanteringar lagts till, samt har olika buggar fixats. Ett stresstest har också utförts och framtida utvecklingsmöjligheter presenteras. Examensarbetet genomfördes på Toyota Material Handling Mjölby (TMH) och gjordes parallellt med ett annat examensarbete av Fredrik Holden som genererade data för applikationen. För en fullständig förståelse angående teorin bakom samt bakgrunden till examensarbetet, vänligen läs också Holdens rapport ”Developmentof method  for automated positioning of 3D-representations of a modularized product”, samt rapporten från föregeånde examensarbetet ”Analysis for Automated Positioning of 3D-representation of a Modularized product”.

Page generated in 0.0117 seconds