• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 11
  • 9
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de l'interaction médicament/récepteur par spectrométrie de masse : mise en place et validation de nouveaux protocoles de criblage moléculaire / Study of drug/receptor interaction by mass spectrometry : development and validation of new tests of molecular screening

Hannewald, Paul 27 October 2008 (has links)
La découverte de nouveaux médicaments par le criblage biomoléculaire est au centre de la recherche pharmaceutique actuelle. La spectrométrie de masse, en tant que technique d’analyse fiable, reproductible, sensible, spécifique, compatible avec de nombreux types d’échantillons et permettant un débit d’analyse conséquent, trouve ainsi sa place dans les stratégies de recherche et développement de nouveaux médicaments. Le but de ce travail était de mettre en place et de valider une stratégie originale, impliquant la désorption/ionisation laser assistée par matrice couplée à la spectrométrie de masse (MALDI-MS) comme technique de détection, en vue du criblage de la liaison de composés à des cibles moléculaires applicable directement à des extraits de plantes. Le protocole que nous avons développé s’articule en trois étapes successives qui sont l’incubation des molécules à tester avec la cible moléculaire choisie (la tubuline ou la DHFR), l’élimination des composés non liés et enfin l’analyse par MALDI-TOFMS des composés liés. Notre démarche a fait l’objet d’une démarche de validation et les résultats pouvant être obtenus ont été discutés. Le débit pouvant être évalué à 60 échantillons en 1h50 à 3h30 soit de 18 à 32 échantillons à l’heure. Enfin, une démarche innovante nous a permis de prouver que notre approche pouvait être utile également en criblage secondaire. L’application de notre approche à des extraits bruts de plantes (Colchique d’Automne, Pervenche de Madagascar et Thé vert) à permis de mettre en évidence 20 molécules actives se liant à l’une ou l’autre des cibles moléculaires utilisées et d’évaluer l’affinité relative de l’une d’entre elles / Discovering new drugs by biomolecular screening is a central task of pharmaceutical research. Mass spectrometry, as a reliable, reproducible, sensitive and specific technique, compatible with a wide range of samples and offering an excellent throughput, shows its potential in different strategies of research and development. The aim of this work was to develop and validate a new strategy, involving matrix assisted laser desorption/ionization coupled to time of flight mass spectrometry (MALDI-TOFMS) to screen the ability of different compounds, including plant extracts, to bind to two biological targets (tubulin and DHFR). The protocol is therefore divided into three main steps : an incubation of the compounds to be tested with target, an elimination of all unbound compounds and the MALDI-TOFMS detection of target-bound compounds. Our protocol was validated and the results that can be obtained were discussed. The throughput offered by this technique was evaluated as 60 samples in 1h50 to 3h30, or 18 to 32 samples per hour. Finally, we developed a new approach to perform a secondary screening of active compounds. The protocol was applied to screen crude plants extracts (colchicum autumnale, catharanthus roseus and green tea) and allowed to find 20 tubulin-binding or DHFR-binding molecules, and the relative affinity of one of these was also evaluated
2

CHEMISTRY – PERFORMANCE CORRELATIONS IN ALTERNATIVE AVIATION FUELS TOWARDS A SUSTAINABLE FUTURE

Petr Vozka (6796532) 16 August 2019 (has links)
<div>Determination of the chemical composition of liquid transportation fuels emerged as a novel and important field of study after the introduction of advanced analytical instruments, which are capable of very detailed chemical analyses of complex mixtures. Aviation fuels make up a crucial portion of liquid transportation fuels. There are several significant challenges in the field of aviation fuels, including the development of optimal analytical methods for the determination of the chemical compositions of the fuels, fuel properties measurements, and correlations between fuel properties and chemical composition. This dissertation explores possible correlations between fuel chemical composition and its properties and proposes novel approaches. First, a detailed description of a method for the determination of the detailed chemical composition of all middle distillate fuels (diesel and aviation fuels) is presented. Second, the density was correlated to fuel composition. Additionally, the approach of measuring the density, the hydrogen content, and the carbon content via a GC×GC-FID was introduced. Lastly, it was discovered that minute differences in chemical composition can influence fuel properties. This finding is described in the last chapter, where three HEFA samples were investigated. </div>
3

Towards an Understanding of Dissolved Organic Matter Molecular Composition and Reactivity in the Environment

Cottrell, Barbara 07 January 2014 (has links)
Dissolved organic matter (DOM), one of the most complex naturally occurring mixtures, plays a central role in the biogeochemistry and the photochemistry of natural waters. A complete understanding of the environmental role of DOM will come only from the elucidation of the relationship between its structure and function. This thesis presents new work on the separation, characterization, and reactivity of DOM in rainwater, freshwater, and seawater. A new separation technique based on counterbalance capillary electrophoresis was developed for the separation of Suwannee River NOM. A comparative study of the organic content of rainwater was accomplished using nuclear magnetic resonance (NMR) with spectral database matching ,Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS), and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS). Three complementary, non-overlapping datasets identified of over 400 compounds. Analysis of the FT-ICR-MS data using van Krevelen diagrams and the carbon oxidation state showed variation in the elemental composition and molecular size. Over 50% of the compounds identified in this study were known components of secondary organic aerosol (SOA) and volatile organic carbon (VOCs). Dissolved organic matter (DOM) plays a central role in the photochemistry of natural waters through the production of reactive oxygen species and the triplet excited state of DOM (3DOM*). These reactive species are central to the reactivity, transport, and fate of both natural and anthropogenic chemicals in the environment. Laser flash photolysis (LFP) was used to demonstrate that particulate organic matter (POM) generates a triplet excited state species (3POM*). LFP of seawater from the Pacific Ocean and the Bermuda Atlantic Time Series Station detected similar excited state species from surface to 4535m. Metal speciation has been implicated in the photochemistry of natural waters. Copper immobilized metal affinity chromatography (IMAC) of seawater and freshwater isolated a low and a high affinity fraction that generated excited state transients. Excitation-emission matrix spectroscopy showed that while the seawater fractions were autochthonous, freshwater fractions enriched in chromophoric DOM (CDOM), were allochthonous. The discovery of these different classes of compounds in freshwater and seawater has important implications both for the mineralization of DOM and the removal of xenobiotics in the aquatic environment.
4

Towards an Understanding of Dissolved Organic Matter Molecular Composition and Reactivity in the Environment

Cottrell, Barbara 07 January 2014 (has links)
Dissolved organic matter (DOM), one of the most complex naturally occurring mixtures, plays a central role in the biogeochemistry and the photochemistry of natural waters. A complete understanding of the environmental role of DOM will come only from the elucidation of the relationship between its structure and function. This thesis presents new work on the separation, characterization, and reactivity of DOM in rainwater, freshwater, and seawater. A new separation technique based on counterbalance capillary electrophoresis was developed for the separation of Suwannee River NOM. A comparative study of the organic content of rainwater was accomplished using nuclear magnetic resonance (NMR) with spectral database matching ,Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS), and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS). Three complementary, non-overlapping datasets identified of over 400 compounds. Analysis of the FT-ICR-MS data using van Krevelen diagrams and the carbon oxidation state showed variation in the elemental composition and molecular size. Over 50% of the compounds identified in this study were known components of secondary organic aerosol (SOA) and volatile organic carbon (VOCs). Dissolved organic matter (DOM) plays a central role in the photochemistry of natural waters through the production of reactive oxygen species and the triplet excited state of DOM (3DOM*). These reactive species are central to the reactivity, transport, and fate of both natural and anthropogenic chemicals in the environment. Laser flash photolysis (LFP) was used to demonstrate that particulate organic matter (POM) generates a triplet excited state species (3POM*). LFP of seawater from the Pacific Ocean and the Bermuda Atlantic Time Series Station detected similar excited state species from surface to 4535m. Metal speciation has been implicated in the photochemistry of natural waters. Copper immobilized metal affinity chromatography (IMAC) of seawater and freshwater isolated a low and a high affinity fraction that generated excited state transients. Excitation-emission matrix spectroscopy showed that while the seawater fractions were autochthonous, freshwater fractions enriched in chromophoric DOM (CDOM), were allochthonous. The discovery of these different classes of compounds in freshwater and seawater has important implications both for the mineralization of DOM and the removal of xenobiotics in the aquatic environment.
5

Characterising tuberculosis treatment success and failure using metabolomics / Fanie Kamfer

Kamfer, Fanie January 2013 (has links)
Tuberculosis (TB) is one of the deadliest infectious diseases of our time, with 1.4 million deaths globally, recorded in 2010 (3800 deaths a day) by the World Health Organization (WHO). Currently, South Africa ranks third on the 2011 list of 22 high-burden TB countries in the world and it was estimated that each active-TB person could potentially infect 10–15 people annually. The WHO additionally reported that in the year 2009, 87% of all TB patients worldwide were successfully treated, with a treatment success rate of 74% reported for South Africa. Despite this however, non-adherence to anti-TB treatment is still a major issue, due to it resulting in a global increased prevalence of drug resistant TB and subsequently TB treatment failure. Treatment failure is thought to be caused by a number of factors, however, it still remains largely misunderstood. One aspect of this, that isn't clearly addressed in the literature, is the underlying variation in each patient, resulting in his/her varying reaction to the drug regimen, and hence it’s varying efficacy from one patient to the next. Furthermore, little is known about the underlying variation of the host to the primary TB infection or response to the TB disease state, and how some patients have more effective mechanisms for eliminating the infection, or recovering from the disease. Considering this, a metabolomics research study using GC×GC-TOFMS was conducted, in order to identify potential metabolite markers which may be used to better characterise the underlining mechanisms associated with poor treatment outcomes (treatment failure). The first aim was to evaluate the accuracy and efficiency of the methodology used, as well as to determine the capability and accuracy of the analyst to perform these methods. In order to evaluate the GCxGC-TOFMS analytical repeatability, one QC sample was extracted and injected repeatedly (6 times) onto the GC×GC-TOFMS. Similarly, the analyst's repeatability for performing the organic acid extraction and analyses was also determined, using 10 identical QC samples, which were extracted and injected separately. CV values were subsequently calculated from the collected and processed data as a measure of this. Of all the compounds detected from the 6 QC sample repeats used for GCxGC-TOFMS repeatability, 95.59% fell below a 50% CV value, and 93,7% of all the compounds analysed for analyst repeatability had a CV < 50. Subsequently, using the above metabolomics approach, in addition to a wide variety of univariate and multivariate statistical methods, two patient outcome groups were compared. A sample group cured from TB after 6 months of treatment was compared vs a sample group where treatment failed after the 6 month period. Using urine collected from these two patient groups at various time points, the following metabolomics comparisons where made: 1) at time of diagnosis, before any anti-TB treatment was administrated, 2) during the course of treatment, in order to determine any variance in these groups due to a varying response to the anti-TB drugs, 3) over the duration of the entire 6 months treatment regimen, in order to determine if differences exist between the two groups over time. A clear natural differentiation between the cured and failed outcome groups were obtained at time of diagnosis, and a total of 39 metabolites markers were subsequently identified. These metabolites were classified according to their various origins, and included (1) those associated with the presence of M. tuberculosis bacteria, (2) those resulting from an altered host metabolism due to the TB infection, and (3) metabolites of various exogenous origins. The detailed interpretation of these metabolites suggests that a possible underlying RCD or some sort of mitochondrial dysfunction may be present in the treatment failure group, which may also be induced through an external stimulus, such as alcohol consumption. We hypothesise that this may possibly result in a far greater severity to M. tuberculosis infection in this group, subsequently causing a reduced capacity for a successful treatment outcome, also considering the critical role of the mitochondria in the metabolism of anti-TB drugs. Furthermore, 20 metabolite markers were identified when comparing the two outcome groups during the treatment phase of this metabolomics investigation. A vast majority of these 20 metabolites were also identified as markers for time 0 (time of diagnosis). Additionally, metabolites associated with anti-TB drug induced side effects, were also found to be comparatively increased in the treatment failure group, indicative of more pronounced liver damage, accompanied by metabolites characteristic of a MADD metabolite profile, due to a deficient electron transport flavoprotein, confirming previous experiments done in rats. These side effects have also previously been implicated as a major contributor of poor treatment compliance, and ultimately treatment failure. Lastly, 35 metabolite markers were identified by time dependent statistical analysis and represented those metabolites best describing the variation between the treatment outcome groups over the entire study duration (from diagnosis, to week 26). This time dependent statistical analysis identified markers, using an alternative statistical approach, and confirmed previous findings and added in a better characterisation of treatment failure. Considering the above, we successfully applied a metabolomics approach for identifying metabolites which could ultimately aid in the prediction and monitoring of treatment outcomes. This additionally led to a better understanding and or characterisation of the phenomenon known as treatment failure, as well as the underlying mechanisms related to this occurrence. / MSc (Biochemistry), North-West University, Potchefstroom Campus, 2013
6

Characterising tuberculosis treatment success and failure using metabolomics / Fanie Kamfer

Kamfer, Fanie January 2013 (has links)
Tuberculosis (TB) is one of the deadliest infectious diseases of our time, with 1.4 million deaths globally, recorded in 2010 (3800 deaths a day) by the World Health Organization (WHO). Currently, South Africa ranks third on the 2011 list of 22 high-burden TB countries in the world and it was estimated that each active-TB person could potentially infect 10–15 people annually. The WHO additionally reported that in the year 2009, 87% of all TB patients worldwide were successfully treated, with a treatment success rate of 74% reported for South Africa. Despite this however, non-adherence to anti-TB treatment is still a major issue, due to it resulting in a global increased prevalence of drug resistant TB and subsequently TB treatment failure. Treatment failure is thought to be caused by a number of factors, however, it still remains largely misunderstood. One aspect of this, that isn't clearly addressed in the literature, is the underlying variation in each patient, resulting in his/her varying reaction to the drug regimen, and hence it’s varying efficacy from one patient to the next. Furthermore, little is known about the underlying variation of the host to the primary TB infection or response to the TB disease state, and how some patients have more effective mechanisms for eliminating the infection, or recovering from the disease. Considering this, a metabolomics research study using GC×GC-TOFMS was conducted, in order to identify potential metabolite markers which may be used to better characterise the underlining mechanisms associated with poor treatment outcomes (treatment failure). The first aim was to evaluate the accuracy and efficiency of the methodology used, as well as to determine the capability and accuracy of the analyst to perform these methods. In order to evaluate the GCxGC-TOFMS analytical repeatability, one QC sample was extracted and injected repeatedly (6 times) onto the GC×GC-TOFMS. Similarly, the analyst's repeatability for performing the organic acid extraction and analyses was also determined, using 10 identical QC samples, which were extracted and injected separately. CV values were subsequently calculated from the collected and processed data as a measure of this. Of all the compounds detected from the 6 QC sample repeats used for GCxGC-TOFMS repeatability, 95.59% fell below a 50% CV value, and 93,7% of all the compounds analysed for analyst repeatability had a CV < 50. Subsequently, using the above metabolomics approach, in addition to a wide variety of univariate and multivariate statistical methods, two patient outcome groups were compared. A sample group cured from TB after 6 months of treatment was compared vs a sample group where treatment failed after the 6 month period. Using urine collected from these two patient groups at various time points, the following metabolomics comparisons where made: 1) at time of diagnosis, before any anti-TB treatment was administrated, 2) during the course of treatment, in order to determine any variance in these groups due to a varying response to the anti-TB drugs, 3) over the duration of the entire 6 months treatment regimen, in order to determine if differences exist between the two groups over time. A clear natural differentiation between the cured and failed outcome groups were obtained at time of diagnosis, and a total of 39 metabolites markers were subsequently identified. These metabolites were classified according to their various origins, and included (1) those associated with the presence of M. tuberculosis bacteria, (2) those resulting from an altered host metabolism due to the TB infection, and (3) metabolites of various exogenous origins. The detailed interpretation of these metabolites suggests that a possible underlying RCD or some sort of mitochondrial dysfunction may be present in the treatment failure group, which may also be induced through an external stimulus, such as alcohol consumption. We hypothesise that this may possibly result in a far greater severity to M. tuberculosis infection in this group, subsequently causing a reduced capacity for a successful treatment outcome, also considering the critical role of the mitochondria in the metabolism of anti-TB drugs. Furthermore, 20 metabolite markers were identified when comparing the two outcome groups during the treatment phase of this metabolomics investigation. A vast majority of these 20 metabolites were also identified as markers for time 0 (time of diagnosis). Additionally, metabolites associated with anti-TB drug induced side effects, were also found to be comparatively increased in the treatment failure group, indicative of more pronounced liver damage, accompanied by metabolites characteristic of a MADD metabolite profile, due to a deficient electron transport flavoprotein, confirming previous experiments done in rats. These side effects have also previously been implicated as a major contributor of poor treatment compliance, and ultimately treatment failure. Lastly, 35 metabolite markers were identified by time dependent statistical analysis and represented those metabolites best describing the variation between the treatment outcome groups over the entire study duration (from diagnosis, to week 26). This time dependent statistical analysis identified markers, using an alternative statistical approach, and confirmed previous findings and added in a better characterisation of treatment failure. Considering the above, we successfully applied a metabolomics approach for identifying metabolites which could ultimately aid in the prediction and monitoring of treatment outcomes. This additionally led to a better understanding and or characterisation of the phenomenon known as treatment failure, as well as the underlying mechanisms related to this occurrence. / MSc (Biochemistry), North-West University, Potchefstroom Campus, 2013
7

Stanovení těkavých izoprenoidů jako markerů vlivu vodního stresu na rezistenci smrku vůči kůrovcům / Determination of volatile isoprenoids as water stress markers of spruce resistance against bark beetle

Slušná, Michaela January 2012 (has links)
Isoprenoids are important components of conifer resin and represent an important part of constituted defence system against herbivores and pathogens. Drought is one of the most important factors that influences the tree physiology and resitance. Due to decreased turgor of resin canal cells, the water insufficiency affects the pressure of the resin and thereby the ability of trees to physically prevent pathogen or herbivore invasion by effective outpouring of the resin. In addition, drought can also change the resin composition and thus can influence the quality of volatiles emitted by the tree. The Norway spruce, Picea abies, is the predominant species of production forests in moderate climate zone. Bark beetles, Ips typographus, represent the most important pest species of spruce. In general, pioneer bark beetles use host volatiles to orient themselves toward the tree suitable for colonization and in many species host volatiles synergize bark beetle aggregation pheromones. Thus the host volatile composition could affect significantly host colonization. This diploma thesis studied the influence of drought on the production and composition of isoprenoid volatile organic compounds in 80 - 100 years old spruce trees. Using I. typographus antennae as biological detectors, we also studied which resin...
8

Analýza těkavých látek lidského tělesného pachu pomocí komprehenzivní dvoudimenzionální plynové chromatografie / Analysis of a human body odour using comprehensive two-dimensional gas chromatography

Bušovská, Radka January 2021 (has links)
Body odour perception plays an important role in human mate choice, especially in women. It was previously proposed that women select partners whose body odour resembles that of woman's fathers. Yet, this phenomenon has only been confirmed using ethological studies based on subjective perception of body odour similarities. Therefore, the aim of my diploma thesis was to test this hypothesis instrumentally using comprehensive GC×GC-TOFMS and subsequent multidimensional analyses of body odour chemical profiles of male partners and fathers of adult women. Body odour sampling from left and right axilla of fathers and partners of 41 women (altogether 164 samples) was performed using cotton swabs, which were then frozen and extracted into hexane. Typical human volatile substances, such as hydrocarbons, carboxylic acids, esters, alcohols, aldehydes, ketones, sterols and terpenes were detected in all examined samples. Using a newly available "tile-based" chromatographic alignment algorithm, we obtained a set of 341 compounds systematically occurring in male axillary odour. The principal component analysis was used to calculate Euclidean distances for all pairs of the studied male subjects. These estimates of "chemical distances" revealed to be significantly smaller for father-partner pairs of individual...
9

Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers

Alsharaeh, Edreese Housni 01 January 2004 (has links)
This study is divided into three parts. Part I deals with the mechanism of the self-initiated polymerization (or thermal polymerization) of styrene in the gas phase. In this work, we present the first direct evidence for the thermally self-initiated polymerization of styrene in the gas phase. Our approach is based on on-line analysis of the gas phase Oligomers by mass-selected ion mobility. The mobility measurements provide structural information on the ionized oligomers based on their collision cross-sections (Ω) which depend on the geometric shapes of the ions. Theoretical calculations of possible structural candidates of the Oligomers ions are then used to compute angle averaged Ω for comparison with the measured ones. The agreement between the measured and calculated Ω of the candidate structures provides reliable assignments to the structures of the oligomers. Furthermore, collisional-induced dissociations of the mass-selected oligomer ions provide further support for the structures obtained from the mobility measurements. Our results indicate that the gas phase polymerization of styrene proceeds via essentially the same initiation mechanism (the Mayo mechanism) as in condensed phase polymerization. The structural evidence, the mechanism of formation and the observed fragmentation pathway of the growing dimers and trimers in the gas phase are presentedIn Part II the solvation of a variety of metal cations by benzene clusters have been studied using laser vaporization, cluster beam and time-of-flight mass spectrometry techniques. In this work strong magic numbers were observed for clusters containing 10, 13 and 14 benzene molecules depending on the nature of the metal cation involved. The metal cations exhibiting preference solvation by 14 benzene molecules show a strong tendency to form sandwich structures with two benzene molecules. The interpretation of these results in view of the proposed structures and the growth patterns of the clusters are presented. In Part III, the work is focused on the investigation of the intracluster ion molecule reactions following the generation of Mg+ within the polar clusters (water, methanol, ether and acetonitrile).
10

Desenvolvimento de um método para determinação simultânea de compostos carbonílicos tóxicos durante a vinificação e avaliação do risco da exposição a estes compostos

Ferreira, Daiani Cecchin January 2017 (has links)
Propriedades benéficas são associadas ao consumo moderado de vinho devido à presença dos compostos fenólicos. Uma dose diária de vinho de até 200 ou 300 mL é sugerida para mulheres e homens, respectivamente. Entretanto, dentre os compostos presentes nos vinhos, podem ser encontrados compostos carbonílicos tóxicos, como o formaldeído, acroleína, acetaldeído, furfural e carbamato de etila, os quais tem sido associados a efeitos adversos à saúde humana, incluindo o câncer. O objetivo deste trabalho foi desenvolver e validar um método para a quantificação simultânea destes compostos tóxicos através da microextração em fase sólida no modo headspace associada à cromatografia gasosa acoplada à espectrometria de massas quadrupolar no modo de monitoramento de íons selecionados (HS-SPME- GC/qMS-SIM) e caracterizar o risco relacionado à exposição a estes compostos. Quatro etapas da vinificação (uva, mosto, após a fermentação alcoólica e vinho) e vinhos comercialmente disponíveis foram analisados com o uso da GC/qMS-SIM após verificar as coeluições através da cromatografia gasosa bidimensional abrangente acoplada ao detector de espectrometria de massas por tempo de voo (GC×GC- TOFMS). O acetaldeído e a acroleína derivatizados coeluíram na primeira dimensão cromatográfica com o limoneno e o hexanoato de metila, respectivamente. Em função disso, foram escolhidos como íons quantificadores na análise por GC/qMS, íons que não foram encontrados no espectro de massas dos compostos coeluídos. Os parâmetros de validação (LOD, LOQ, recuperação, repetibilidade e reprodutibilidade) mostraram que a HS-SPME-GC/qMS-SIM é adequada para quantificar simultaneamente os cinco compostos tóxicos. A acroleína foi encontrada em concentrações similares na uva e mosto, e não foi detectada após a fermentação alcoólica e no vinho. O acetaldeído foi detectado em menores concentrações no mosto e em maiores níveis após a fermentação alcoólica. A concentração de furfural foi maior nas uvas do que nas demais etapas. O carbamato de etila não foi detectado nas etapas da vinificação e nos vinhos comerciais. Os níveis de formaldeído ficaram entre os valores de LOD e LOQ em todas as etapas da vinificação e nos vinhos comerciais. Além disso, nos vinhos comercialmente disponíveis, a acroleína foi encontrada em 50% das amostras, o acetaldeído e o furfural estavam presentes em todas as amostras. O único composto cuja ingestão pode representar risco a saúde é a acroleína. Dessa forma, este estudo contribuiu para identificar os pontos críticos de controle relacionados à presença de compostos tóxicos durante a vinificação, incluindo a produção do acetaldeído durante a fermentação alcoólica e a contaminação das uvas com acroleína e furfural através do ar atmosférico. Além disso, os resultados da ocorrência destes compostos tóxicos em vinhos comercialmente disponíveis poderão contribuir para a criação de uma legislação nacional que estabeleça limites dos mesmos nesta bebida. / Beneficial properties are associated with moderate consumption of wine due to the presence of phenolic compounds. A daily intake of wine of up to 200 or 300 mL is suggested for women and men, respectively. However, toxic carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, furfural and ethyl carbamate can be found among the compounds present in wines, which have been associated with adverse effects on human health, including cancer. The objective of this work was to develop and validate a method for simultaneous quantification of these toxic compounds through headspace solid phase microextraction associated with gas chromatography with quadrupole mass spectrometric detection in selected-ion monitoring mode (HS-SPME-GC/qMS-SIM) and characterize the risk related to exposure to these compounds. Four vinification steps (grape, must, after alcoholic fermentation and wine) and commercially available wine were analyzed using GC/qMS-SIM after checking the coelutions by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS). The derivatized acetaldehyde and acrolein coeluted in the first chromatographic dimension with limonene and methyl hexanoate, respectively. Based on this, were chosen as quantifiers ions in GC/qMS analysis, ions that were not found in the mass spectra of the coeluted compounds. The validation parameters (LOD, LOQ, recovery, repeatability and reproducibility) showed that HS-SPME-GC/qMS-SIM is adequate to simultaneously quantify the five toxic compounds. Acrolein was found at similar concentrations in grape and must, and was not detected after alcoholic fermentation and in wine. Acetaldehyde was detected at lower concentrations in the must and at higher levels after alcoholic fermentation. The concentration of furfural was higher in the grapes than in the other stages. Ethyl carbamate was not detected in the vinification steps and in commercially wine. Formaldehyde levels were between the LOD and LOQ values at all stages of winemaking and commercial wines. In addition, in commercially available wines, acrolein was found in 50% of samples, acetaldehyde and furfural were present in all samples. The only compound whose intake may pose a health risk is acrolein. Thus, this study contributed to identify critical control point related to the presence of toxic compounds during winemaking, including the production of acetaldehyde during alcoholic fermentation and the contamination of grapes with acrolein and furfural through atmospheric air. In addition, the results of the occurrence of these toxic compounds in commercially available wines may contribute to the creation of national legislation that establishes limits of the same in this drink.

Page generated in 0.0252 seconds