• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic variation in TRIM5 in the black South African population

Wingfield, Chyreene Lesley Margaret 01 July 2009 (has links)
No description available.
2

Viral and Host Determinants of Primate Lentivirus Restriction by Old World Primate TRIM5alpha Proteins

McCarthy, Kevin Raymond 21 October 2014 (has links)
The host restriction factor TRIM5α mediates a post-entry, pre-integration block to retroviral infection that depends upon recognition of the viral capsid by the TRIM5α PRYSPRY domain. The two predominant alleles of rhesus macaque TRIM5α (rhTRIM5αQ and rhTRIM5αTFP) restrict HIV 1, but cannot restrict the macaque-adapted virus SIVmac239. To investigate how TRIM5α recognizes retroviral capsids, we exploited the differential sensitivities of these two viruses to identify gain-of-sensitivity mutations in SIVmac239, and we solved the structure of the SIVmac239 capsid N-terminal domain. When mapped onto this structure, single amino acid substitutions affecting both alleles were in the β-hairpin. In contrast, mutations specifically affecting rhTRIM5αTFP surround a highly conserved patch of amino acids that is unique to capsids of primate lentiviruses. This "patch" sits at the junction between the binding sites of multiple cellular cofactors (cyclophilin A, Nup-358 cyclophilin A-like domain, Nup-153 and CPSF6). Differential restriction of these alleles is due to a Q/TFP polymorphism in the first variable loop (V1) within the PRYSPRY domain. Q reflects the ancestral state (present in the last common ancestor of Old World primates) and has remained unmodified in all but one lineage of African monkeys, the Cercopithecinae. While Q-alleles can be found among some Cercopithecinae primates, in others Q has been replaced by a G or overwritten by a two amino acid insertion (giving rise to TFP in macaques). In one lineage, the Q to G substitution was later followed by an adjacent 20 amino acid duplication. We found that these modifications in TRIM5α specifically impart the ability to restrict Cercopithecinae SIVs without altering β-hairpin recognition. At least twice Cercopithecinae TRIM5αs independently evolved to target the same conserved patch of amino acids in capsid. Based on these findings, we propose that the β-hairpin is a retrovirus associated molecular pattern widely exploited by TRIM5α proteins, while recognition of the cofactor binding region was driven by the emergence of the ancestors of modern Cercopithecinae SIVs. Distribution on the Cercopithecinae phylogenetic tree indicates that selection for these changes in TRIM5α V1 began 11-16 million years ago, suggesting that primate lentiviruses are at least as ancient.
3

Genetic, structural, and functional exploration of the restrictive capacity of TRIM proteins against immunodeficiency viruses

Simpson, Shmona January 2017 (has links)
HIV-2 differs from HIV-1 in that many infected people experience normal survival, whilst only 20% progress rapidly to AIDS. Understanding mechanisms of delayed HIV-2 disease progression could provide new insights into HIV control. The Caio Community Cohort was established in Guinea-Bissau in the setting of high HIV-2 prevalence. This thesis investigates the role of polymorphic host restriction factors of the TRIM family in HIV-2 outcome. TRIM proteins are a family of E3 ubiquitin-ligases, where closely-related TRIM5α and TRIM22 are thought to inhibit HIV-1 transcription, uncoating and budding. There was an association between TRIM5α amino acid substitution R136Q and reduced HIV-2 viral load/prolonged survival. Conversely, P479L was enriched among HIV-2 infected participants and progressors with CD4+ T cell decline. TRIM22 was highly polymorphic in this cohort, revealing three novel coding variants. Although most substitutions were located in the putative virus-interacting PRYSPRY domain, two in the coiled-coil, D155N and R242T, showed significant and divergent associations with survival. R242T was enriched in HIV-2 infected participants, who progressed to death at twice the rate of wild-type controls. In silico studies predicted D282, D360, and R321 of TRIM22 to be highly conserved, exposed residues, for which polymorphisms would be deleterious. When aligned with sequences from the potent HIV-1 restriction factor, rhesus macaque TRIM5α, TRIM22 substitutions R321K, T415I, and D360Y were spatially relevant to residues involved in HIV-1 restriction. The role of TRIM22 in HIV restriction was supported by in vitro pilot studies showing that TRIM22 was upregulated by HIV-1 infection in a lymphoid cell line and co-localised with the HIV-1 capsid protein p24. Overexpression of TRIM22 resulted in the restriction of VSV-G pseudotyped HIV-1 and SIVmac. The R242T substitution diminished TRIM22's restriction of HIV-1 and SIVmac: protein analysis suggested that this may be due to the inability of the R242T mutant to fully dimerise.
4

Rôles de TRIM5 et Atg5 dans la réponse immune innée de cellules infectées par le VIH-1

Khalfi, Soumia January 2020 (has links) (PDF)
No description available.

Page generated in 0.0197 seconds