• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 12
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice

Chai, Xiao-Ning, Ludwig, Friedrich-Alexander, Müglitz, Anne, Schaefer, Michael, Yin, Hai-Yan, Brust, Peter, Regenthal, Ralf, Krügel, Ute 08 May 2023 (has links)
TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2–1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.
42

Studies on ion channels of coronary endothelium with clinical implications. / 冠狀動脈內皮離子通道的研究及其臨床意義 / CUHK electronic theses & dissertations collection / Guan zhuang dong mai nei pi li zi tong dao de yan jiu ji qi lin chuang yi yi

January 2011 (has links)
Ca2+-activated potassium channels (KCa) and canonical transient receptor potential (TRPC) channels are essential to endothelial function. In ischemic heart disease, or in cardiac surgery, coronary endothelium is subjected to ischemia-reperfusion (I-R) / hypoxia-reoxygenation (H-R) injury. Hyperkalemic cardioplegic or organ preservation solutions used in cardiac surgery including heart transplantation also impair endothelial function. The present study was designed to mainly investigate whether endothelial dysfunction occurring in H-R or in hyperkalemic exposure is attributable to alterations of intermediate- and small-conductance KCa (IKCa and SKCa) channels, or TRPC channels, in particular, the TRPC3 channel. / Exposure to 60-min hypoxia followed by reoxygenation inhibited the vasorelaxant response of coronary arteries to IKCa / SKCa activator 1-EBIO. H-R reduced endothelial IKCa and SKCa currents and downregulated IKCa expression in PCECs. 1-EBIO enhanced endothelial K+ current that was blunted by H-R. / Exposure to hyperkalemic solutions decreased Ca2+ influx via TRPC3 in PCECs. The reduced Ca2+ influx in PCECs and the attenuated EDHF-mediated vasorelaxation in porcine coronary arteries, which were caused by hyperkalemic or cardioplegic / organ preservation solutions, were restored by OAG. / In PCECs, hypoxia for 60-min with reoxygenation reduced TRPC3 current and Ca2+ influx via TRPC3, which was accompanied by decreased NO release and endothelium-dependent vasorelaxation of porcine coronary arteries. The compromised endothelial function was restored by OAG. The translocation of TRPC3 to endothelial membrane was inhibited by H-R. / In TRPC3-overexpressing HEK293 cells, followed by reoxygenation, short-time hypoxia (10-min) enhanced, whereas prolonged hypoxia (60-min) reduced the current induced by TRPC3/6/7 activator OAG. / Our results indicate that: (1) Endothelial IKCa, SKCa and TRPC3 play an important role in regulating vascular tone; TRPC3 contributes to NO release from endothelial cells and is also involved in the function of EDHF. (2) H-R (60-30 min) reduces endothelial IKCa and SKCa currents with downregulation ofthe protein expression of IKCa. (3) H-R has dual effect on TRPC3 with short-time hypoxia (lO-min) enhancing whereas prolonged hypoxia (60-min) decreasing the electrophysiological activity of this channel. H-R (60-30 min) inhibits the translocation of TRPC3 to endothelial membrane. Furthermore, H-R inhibits Ca2+ influx via TRPC3 and such inhibition is associated with a decrease of NO production. (4) The activator of IKCa / SKCa or TRPC protects coronary endothelium against H-R injury. In coronary endothelium exposed to hyperkalemic or cardioplegic / organ preservation solutions, TRPC activator also exhibits protective effect. / The above findings are likely to have significant implications in ischemic heart disease and in modem cardiopulmonary surgery. / Whole-cell membrane currents of IKCa, SKCa, or TRPC3 were recorded by patch-clamp in primary cultured porcine coronary endothelial cells (PCECs). TRPC3 current was also studied in human embryonic kidney cells (HEK293 cells) transiently overexpressed with TRPC3 gene. Protein or mRNA expression of these channels was detected by Western blot or RT-PCR. Intracellular Ca2+ concentration was measured by Ca2+ imaging technique. Isometric force study was performed in a wire myograph and endothelial nitric oxide (NO) release was measured electrochemically by using a NO-specific microsensor in porcine coronary small arteries. / Huang, Junhao. / "December 2010." / Adviser: Qin Yang. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 138-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
43

TRPV4-TRPC1- BKca tri-complex mediates epoxyeicosatrienoic acid-induced membrane hyperpolarization. / Transient receptor potential vanilloid 4- transient receptor potential channel 1- large conductance calcium activated potassium channels tri-complex mediates epoxyeicosatrienoic acid-induced membrane hyperpolarization / CUHK electronic theses & dissertations collection

January 2011 (has links)
Ma, Yan. / "Ca" in the title is subscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 143-166). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
44

Efeito da Luz e Temperatura Sobre a Expressão de Genes do Relógio em Mamífero: Tecidos Periféricos como Modelo de Estudo / Effect of light and temperature on the mammalian clock genes expression: peripheral tissues as study model

Mezzalira, Nathana Fernandes 10 December 2015 (has links)
O surgimento e a evolução da vida na terra foram possíveis graças ao desenvolvimento de mecanismos temporais precisos capazes de ajustar os processos fisiológicos que ocorriam no interior do organismo com os ciclos ambientais, promovendo assim, ganhos na capacidade adaptativa e reprodutiva dos indivíduos. Neste contexto, luz e temperatura são as duas pistas temporais mais relevantes para resetar o relógio endógeno e, aparentemente, esses dois zeitgebers trabalham juntos para manter os ritmos circadianos. Uma ampla gama de fotorreceptores e fotopigmentos evoluiu no sentido de perceber com alta sensibilidade a informação fótica fornecida pelo ambiente e, recentemente, foi demonstrado que a detecção de temperatura também pode ser exercida pelos fotopigmentos rodopsina e melanopsina, sendo mediada por canais TRP (Shen et al., 2011). Consideramos as células B16-F10 Per1::Luc como um modelo promissor para o estudo de luz e temperatura em relógios periféricos, uma vez que essa linhagem expressa os dois fotopigmentos apontados com função de termorreceptores em Drosophila. Nossos estudos nos permitiram verificar que a luz não atua como um agente sincronizador nessas células, que se mantiveram em livre curso mesmo após um pulso de 10 min de luz azul (650 lux). Por outro lado, um pulso de temperatura de 2,5º C acima da temperatura de manutenção por 1h atuou ajustando a expressão do gene Per1, imprimindo um ritmo circadiano, diferentemente do observado no controle. Com base nessas informações, hipotetizamos que a informação de luz, percebida via melanopsina na retina de mamíferos, levaria a regulação da temperatura circadiana pelo NSQ, e a temperatura corporal, por sua vez, poderia atuar como uma pista interna para a sincronização dos tecidos periféricos, tendo os canais TRP como mediadores. Para responder esta questão, utilizamos camundongos WT e TrpV1 KO submetidos a diferentes protocolos de luz e avaliamos a expressão de genes do relógio Per1, Per2, Clock e Bmal1 e dos canais TrpV1 e TrpA1 em tecidos periféricos. Identificamos que a glândula suprarrenal, fígado e tecido adiposo marrom possuem uma maquinaria do relógio tipicamente ativa e acreditamos que a oscilação dos genes de relógio observada nesses tecidos é expressiva. Interessantemente, vimos também que o TrpV1, além de ser expresso nos tecidos analisados em animais WT, apresenta uma transcrição rítmica no fígado e tecido adiposo marrom de animais em LD, corroborando nossa hipótese de que canais TRP atuam como mediadores da informação de luz aos tecidos periféricos. Dadas as diferenças encontradas entre os animais WT e TrpV1 KO, sugerimos que a presença do canal TRPV1 pode ser essencial, embora seu grau de envolvimento varie de acordo com o tecido. No que diz respeito ao canal TRPA1, encontramos dois resultados que merecem ser destacados. Primeiramente, identificamos no fígado de camundongos TrpV1 KO mantidos em LD uma provável compensação da expressão de TrpA1 na ausência de TrpV1 e, curiosamente, que o tecido adiposo marrom não expressa o canal TrpA1. Considerando os resultados deste trabalho sobre o envolvimento dos canais TRP em resposta à luz e temperatura, acreditamos ter fortalecido nossa hipótese inicial, principalmente após demonstrarmos o papel do canal TRPV1 e que tecidos periféricos são sincronizados por alterações de temperatura. / The life emergence and evolution on Earth were made possible by the development of precise temporal mechanisms able to adjust the physiological processes within an organism with environmental cycles, thus promoting gains in the adaptive and reproductive capacity of the individuals. In this context, light and temperature are the two most relevant time cues to reset the endogenous clock; apparently these two zeitgebers work together to keep the circadian rhythms. A wide variety of photoreceptors and photopigments evolved in order to precisely perceive the photic information provided by the environment, and recently it has been shown that the temperature detection can also be exerted by the photopigments rhodopsin and melanopsin, being mediated by TRP channels (Shen et al., 2011). We have identified B16-F10 Per1::Luc cells as a promising model for the study of light and temperature effects on peripheral clocks, since this cell line expresses both photopigments pointed as thermoreceptors in Drosophila. Our studies allowed us to demonstrate that light does not act as a synchronizing agent on those cells, which remained in free running after a 10 min pulse of blue light (650 lux). On the other hand, a temperature pulse of 2.5º C above the maintenance temperature, for 1h, adjusted Per1 gene expression, imprinting a circadian rhythm, which was not observed in the control. Based on this information, we hypothesized that the light perceived via melanopsin by the mammalian retina would lead to the regulation of the circadian temperature by the SCN, and the body temperature, in turn, could act as an inner cue for the synchronization of the peripheral tissues, having the TRP channels as mediators. To answer this question, we have used WT and TrpV1 KO mice under different light protocols and evaluated the expression of clock genes Per1, Per2, Clock and Bmal1 and TrpV1 and TrpA1 channels in peripheral tissues. We found that the adrenal gland, liver and brown adipose tissue have a typically active clock machinery, and the oscillation of clock genes observed in these tissues is significant. Interestingly, we observed that TrpV1 is expressed in those tissues, and presents a rhythmic transcription in the liver and brown adipose tissue of LD maintained animals, confirming our hypothesis that TRP channels act as mediators of light information to peripheral tissues. In face of the differences between WT and trpV1 KO animals, we suggest that the presence of the TRPV1 channel may be essential, although its degree of involvement may vary according to the tissue. In terms of TRPA1 channel, we found two results that deserve to be highlighted. Firstly, we identified in the liver of TrpV1 KO mice maintained in LD a presumable compensation of TrpA1 expression in the absence of TrpV1 and, interestingly, the brown adipose tissue does not express TrpA1 channel. Considering the findings of this study on the participation of TRP channels in responses to light and temperature, we believe we have strengthened our initial hypothesis, especially after we have demonstrated the role of TRPV1 channel, and that peripheral tissues may be synchronized by temperature changes.
45

Efeito da Luz e Temperatura Sobre a Expressão de Genes do Relógio em Mamífero: Tecidos Periféricos como Modelo de Estudo / Effect of light and temperature on the mammalian clock genes expression: peripheral tissues as study model

Nathana Fernandes Mezzalira 10 December 2015 (has links)
O surgimento e a evolução da vida na terra foram possíveis graças ao desenvolvimento de mecanismos temporais precisos capazes de ajustar os processos fisiológicos que ocorriam no interior do organismo com os ciclos ambientais, promovendo assim, ganhos na capacidade adaptativa e reprodutiva dos indivíduos. Neste contexto, luz e temperatura são as duas pistas temporais mais relevantes para resetar o relógio endógeno e, aparentemente, esses dois zeitgebers trabalham juntos para manter os ritmos circadianos. Uma ampla gama de fotorreceptores e fotopigmentos evoluiu no sentido de perceber com alta sensibilidade a informação fótica fornecida pelo ambiente e, recentemente, foi demonstrado que a detecção de temperatura também pode ser exercida pelos fotopigmentos rodopsina e melanopsina, sendo mediada por canais TRP (Shen et al., 2011). Consideramos as células B16-F10 Per1::Luc como um modelo promissor para o estudo de luz e temperatura em relógios periféricos, uma vez que essa linhagem expressa os dois fotopigmentos apontados com função de termorreceptores em Drosophila. Nossos estudos nos permitiram verificar que a luz não atua como um agente sincronizador nessas células, que se mantiveram em livre curso mesmo após um pulso de 10 min de luz azul (650 lux). Por outro lado, um pulso de temperatura de 2,5º C acima da temperatura de manutenção por 1h atuou ajustando a expressão do gene Per1, imprimindo um ritmo circadiano, diferentemente do observado no controle. Com base nessas informações, hipotetizamos que a informação de luz, percebida via melanopsina na retina de mamíferos, levaria a regulação da temperatura circadiana pelo NSQ, e a temperatura corporal, por sua vez, poderia atuar como uma pista interna para a sincronização dos tecidos periféricos, tendo os canais TRP como mediadores. Para responder esta questão, utilizamos camundongos WT e TrpV1 KO submetidos a diferentes protocolos de luz e avaliamos a expressão de genes do relógio Per1, Per2, Clock e Bmal1 e dos canais TrpV1 e TrpA1 em tecidos periféricos. Identificamos que a glândula suprarrenal, fígado e tecido adiposo marrom possuem uma maquinaria do relógio tipicamente ativa e acreditamos que a oscilação dos genes de relógio observada nesses tecidos é expressiva. Interessantemente, vimos também que o TrpV1, além de ser expresso nos tecidos analisados em animais WT, apresenta uma transcrição rítmica no fígado e tecido adiposo marrom de animais em LD, corroborando nossa hipótese de que canais TRP atuam como mediadores da informação de luz aos tecidos periféricos. Dadas as diferenças encontradas entre os animais WT e TrpV1 KO, sugerimos que a presença do canal TRPV1 pode ser essencial, embora seu grau de envolvimento varie de acordo com o tecido. No que diz respeito ao canal TRPA1, encontramos dois resultados que merecem ser destacados. Primeiramente, identificamos no fígado de camundongos TrpV1 KO mantidos em LD uma provável compensação da expressão de TrpA1 na ausência de TrpV1 e, curiosamente, que o tecido adiposo marrom não expressa o canal TrpA1. Considerando os resultados deste trabalho sobre o envolvimento dos canais TRP em resposta à luz e temperatura, acreditamos ter fortalecido nossa hipótese inicial, principalmente após demonstrarmos o papel do canal TRPV1 e que tecidos periféricos são sincronizados por alterações de temperatura. / The life emergence and evolution on Earth were made possible by the development of precise temporal mechanisms able to adjust the physiological processes within an organism with environmental cycles, thus promoting gains in the adaptive and reproductive capacity of the individuals. In this context, light and temperature are the two most relevant time cues to reset the endogenous clock; apparently these two zeitgebers work together to keep the circadian rhythms. A wide variety of photoreceptors and photopigments evolved in order to precisely perceive the photic information provided by the environment, and recently it has been shown that the temperature detection can also be exerted by the photopigments rhodopsin and melanopsin, being mediated by TRP channels (Shen et al., 2011). We have identified B16-F10 Per1::Luc cells as a promising model for the study of light and temperature effects on peripheral clocks, since this cell line expresses both photopigments pointed as thermoreceptors in Drosophila. Our studies allowed us to demonstrate that light does not act as a synchronizing agent on those cells, which remained in free running after a 10 min pulse of blue light (650 lux). On the other hand, a temperature pulse of 2.5º C above the maintenance temperature, for 1h, adjusted Per1 gene expression, imprinting a circadian rhythm, which was not observed in the control. Based on this information, we hypothesized that the light perceived via melanopsin by the mammalian retina would lead to the regulation of the circadian temperature by the SCN, and the body temperature, in turn, could act as an inner cue for the synchronization of the peripheral tissues, having the TRP channels as mediators. To answer this question, we have used WT and TrpV1 KO mice under different light protocols and evaluated the expression of clock genes Per1, Per2, Clock and Bmal1 and TrpV1 and TrpA1 channels in peripheral tissues. We found that the adrenal gland, liver and brown adipose tissue have a typically active clock machinery, and the oscillation of clock genes observed in these tissues is significant. Interestingly, we observed that TrpV1 is expressed in those tissues, and presents a rhythmic transcription in the liver and brown adipose tissue of LD maintained animals, confirming our hypothesis that TRP channels act as mediators of light information to peripheral tissues. In face of the differences between WT and trpV1 KO animals, we suggest that the presence of the TRPV1 channel may be essential, although its degree of involvement may vary according to the tissue. In terms of TRPA1 channel, we found two results that deserve to be highlighted. Firstly, we identified in the liver of TrpV1 KO mice maintained in LD a presumable compensation of TrpA1 expression in the absence of TrpV1 and, interestingly, the brown adipose tissue does not express TrpA1 channel. Considering the findings of this study on the participation of TRP channels in responses to light and temperature, we believe we have strengthened our initial hypothesis, especially after we have demonstrated the role of TRPV1 channel, and that peripheral tissues may be synchronized by temperature changes.
46

Neurological Responses to a Glucose Diet in Caenorhabditis elegans

Dumesnil, Dennis 08 1900 (has links)
TRPV channels play a role in both mammalian insulin signaling, with TRPV1 expression in pancreatic beta-cells, and in C. elegans insulin-like signaling through expression of OSM-9, OCR-1, and OCR-2 in stress response pathways. In response to a glucose-supplemented diet, C. elegans are know to have sensitivity to anoxic stress, exhibit chemotaxis attraction, and display reduced egg-laying rate. Transcriptome analysis reveals that glucose stimulates nervous system activity with increased transcript levels of genes regulating neurotransmitters. Ciliated sensory neurons are needed for a reduced egg-laying phenotype on a glucose-supplemented diet. Egg-laying rate is not affected when worms graze on glucose-supplemented Delta-PTS OP50 E. coli, which is defective in glucose uptake. This suggests a possible sensory neuron obstruction by exopolysaccharides produced by standard OP50 E. coli on glucose, eliciting a starvation response from the worm and causing reduced egg-laying rate. Glucose chemotaxis is affected in specific TRPV subunit allele mutants: ocr-2(vs29) and osm-9(yz6), serotonin receptor mutants: ser-1(ok345) and mod-1(ok103), and G-alpha protein mutant: gpa-10(pk362). TRPV deletion mutants had no effect on glucose chemotaxis, alluding to the modality role pf TRPV alleles in specific sensory neurons. The role of serotonin in a reduced egg-laying rate with glucose remains unclear.
47

Úloha vstupu vápenatých iontů a vápnikové senzitizace při kontrakci izolovaných artérií normotenzního a hypertenzního potkana / The role of calcium influx and calcium sensitization in contraction of isolated arteries of normotensive and hypertensive rat

Bencze, Michal January 2017 (has links)
Vascular resistance is mainly determined by the contraction of vascular smooth muscle (VSM), which is regulated by the phosphorylation of myosin light chain (MLC). VSM contraction is initiated by calcium influx into the VSM cells, which is mediated by transient receptor potential (TRP) channels and L-type voltage- dependent calcium channels (L-VDCC). On the other hand, calcium sensitization is a mechanism enhancing vascular contractile response at a given level of intracellular calcium by RhoA/Rho kinase pathway-mediated inhibition of myosin light chain phosphatase. In this thesis I present the data about i) the role of TRP channels in the mechanisms of vascular smooth muscle contraction, ii) enhanced contractility of arteries from spontaneously hypertensive rats (SHR), and iii) the differences in contraction of arteries from normotensive and hypertensive rats related to the role of RhoA/Rho kinase pathway in three types of experimental hypertension (SHR, Ren-2 transgenic rats and salt-sensitive Dahl rats). In the study concerning TRP channels, I compared the effects of three commonly used non-selective TRP channels inhibitors (2-APB, SKF-96365, FFA) on isolated arteries. Among them 2-APB was the most interesting because the observed inhibitory effects of 2-APB were dependent on the type of...
48

Identification des canaux TRPC impliqués dans la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez le rat

Kougioumoutzakis, André 08 1900 (has links)
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT. / The hippocampal neuronal network plays a crucial role in memory by producing long lasting changes in the efficacy of its synapses. In interneurons of stratum oriens/alveus (O/A), long term potentiation (LTP) induction requires metabotropic glutamate receptor subtype 1a (mGluR1a)-evoked excitatory postsynaptic currents (EPSCs) and subsequent Ca2+ entry through transient receptor potential (TRP) channels. The objectives of this project were to identify the TRP channels that mediate mGluR1a-evoked EPSCs and to explore molecular mechanisms that underlie their activation. Electrophysiological recordings showed that mGluR1a-evoked EPSCs were specifically observed in O/A interneurons and they were phospholipase C-independent. We then examined TRPC expression and their interaction with mGluR1a by RT-PCR, immunofluorescence and co-immunoprecipitation techniques. Our results show that TRPC1 and mGluR1a associate in hippocampus and that both proteins have overlapping distributions in dendrites of O/A interneurons. In contrast, TRPC4 seems to associate with mGluR1a only in recombinant system and their co-localization appears to be limited to the cell body. Finally, we performed recordings of interneurons in which TRPC expression was selectively suppressed by small interfering RNAs and we found that TRPC1, but not TRPC4, is an obligatory subunit of the channel that mediate mGluR1a-evoked EPSCs. This work brought new insight on molecular mechanisms underlying synaptic transmission of O/A interneurons and uncovered a potential role for TRPC1 in LTP.
49

Identification des canaux TRPC impliqués dans la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez le rat

Kougioumoutzakis, André 08 1900 (has links)
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT. / The hippocampal neuronal network plays a crucial role in memory by producing long lasting changes in the efficacy of its synapses. In interneurons of stratum oriens/alveus (O/A), long term potentiation (LTP) induction requires metabotropic glutamate receptor subtype 1a (mGluR1a)-evoked excitatory postsynaptic currents (EPSCs) and subsequent Ca2+ entry through transient receptor potential (TRP) channels. The objectives of this project were to identify the TRP channels that mediate mGluR1a-evoked EPSCs and to explore molecular mechanisms that underlie their activation. Electrophysiological recordings showed that mGluR1a-evoked EPSCs were specifically observed in O/A interneurons and they were phospholipase C-independent. We then examined TRPC expression and their interaction with mGluR1a by RT-PCR, immunofluorescence and co-immunoprecipitation techniques. Our results show that TRPC1 and mGluR1a associate in hippocampus and that both proteins have overlapping distributions in dendrites of O/A interneurons. In contrast, TRPC4 seems to associate with mGluR1a only in recombinant system and their co-localization appears to be limited to the cell body. Finally, we performed recordings of interneurons in which TRPC expression was selectively suppressed by small interfering RNAs and we found that TRPC1, but not TRPC4, is an obligatory subunit of the channel that mediate mGluR1a-evoked EPSCs. This work brought new insight on molecular mechanisms underlying synaptic transmission of O/A interneurons and uncovered a potential role for TRPC1 in LTP.

Page generated in 0.0996 seconds