• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of nonadiabatic dynamics and time-resolved photoelectron spectra in the frame of time-tependent density functional theory

Werner, Ute 25 July 2011 (has links)
Ziel dieser Arbeit war die Entwicklung einer allgemein anwendbaren Methode für die Simulation von ultraschnellen Prozessen und experimentellen Observablen. Hierfür wurden die Berechnung der elektronischen Struktur mit der zeitabhängigen Dichtefunktionaltheorie (TDDFT) und das Tully-Surface-Hopping-Verfahren für die nichtadiabatische Kerndynamik auf der Basis klassischer Trajektorien miteinander kombiniert. Insbesondere wurde eine Beschreibung der nichtadiabatischen Kopplungen für TDDFT entwickelt. Diese Methode wurde für die Simulation noch komplexerer Systeme durch die Tight-Binding-Näherung für TDDFT erweitert. Da die zeitaufgelöste Photoelektronenspektroskopie (TRPES) ein exzellentes experimentelles Verfahren für die Echtzeitbeobachtung von ultraschnellen Prozessen darstellt, wurde eine TDDFT-basierte Methode für die Simulation von TRPES entwickelt. Der Methode liegt die Idee zu Grunde, das System aus Kation und Photoelektron näherungsweise durch angeregte Zustände des neutralen Moleküls oberhalb der Ionisierungsgrenze zu beschreiben. Um diese Zustände mit TDDFT berechnen zu können wurde eine Beschreibung der Übergangsdipolmomente zwischen angeregten TDDFT-Zuständen entwickelt. Des Weiteren wurden Simulationen im Rahmen des Stieltjes-Imaging-Verfahrens, das eine Möglichkeit der Rekonstruktion des Photoelektronenspektrums aus den spektralen Momenten bietet, durchgeführt. Diese spektralen Momente wurden aus den diskreten TDDFT-Zuständen berechnet. Die breite Anwendbarkeit der entwickelten theoretischen Methoden für die Simulation von komplexen Systemen wurde an der Photoisomerisierung in Benzylidenanilin sowie der ultraschnellen Photodynamik in Furan, Pyrazin und mikrosolvatisiertem Adenin illustriert. Die dargestellten Beispiele demonstrieren, dass die nichtadiabatische Dynamik im Rahmen von TDDFT bzw. TDDFTB sehr gut für die Untersuchung und Interpretation der ultraschnellen photoinduzierten Prozesse in komplexen Molekülen geeignet ist. / The goal of this thesis was the development of a generally applicable theoretical framework for the simulation of ultrafast processes and experimental observables in complex molecular systems. For this purpose, a combination of the time-dependent density functional theory (TDDFT) for the description of the electronic structure with the Tully''s surface hopping procedure for the treatment of nonadiabatic nuclear dynamics based on classical trajectories was employed. In particular, a new approach for the calculation of nonadiabatic couplings within TDDFT was devised. The method was advanced for the description of more complex systems such as chromophores in a solvation shell by employing the tight binding approximation to TDDFT. Since the time-resolved photoelectron spectroscopy (TRPES) represents a powerful experimental technique for real-time observation of ultrafast processes, a TDDFT based approach for the simulation of TRPES was developed. The basic idea is the approximate representation of the combined system of cation and photoelectron by excited states of the neutral species above the ionization threshold. In order to calculate these states with TDDFT, a formulation of the transition dipole moments between excited states within TDDFT was devised. Moreover, simulations employing the Stieltjes imaging (SI) procedure were carried out providing the possibility to reconstruct photoelectron spectra from spectral moments. In this work, the spectral moments were calculated from discrete TDDFT states. The scope of the developed theoretical methods was illustrated on the photoisomerization in benzylideneaniline as well as on the ultrafast photodynamics in furan, pyrazine, and microsolvated adenine. The examples demonstrate that the nonadiabatic dynamics simulations based on TDDFT and TDDFTB are particularly suitable for the investigation and interpretation of ultrafast photoinduced processes in complex molecules.
2

Chemical reaction dynamics and coincidence imaging spectroscopy

Lee, Anthony M. D., 1976- 05 July 2007 (has links)
This thesis describes and develops two experimental techniques, Time Resolved Photoelectron Spectroscopy (TRPES), and Time Resolved Coincidence Imaging Spectroscopy (TRCIS), to study ultrafast gas phase chemical dynamics. We use TRPES to investigate the effects of methyl substitution on the electronic dynamics of the simple alpha, beta-enones acrolein, crotonaldehyde, methylvinylketone, and methacrolein following excitation to the S2 state. We determine that following excitation, the molecules move rapidly away from the Franck-Condon region reaching a conical intersection promoting relaxation to the S1 state. Once on the S1 surface, the trajectories access another conical intersection leading them to the ground state. Only small variations between molecules are seen in their S2 decay times. However, the position of methyl group substitution greatly affects the relaxation rate from the S1 surface. Ab initio calculations used to compare the geometries, energies, and topographies of the S1/S0 conical intersections of the molecules are not able to explain the variations in relaxation behaviour. We propose a model that uses dynamical factors of specific motions in the molecules to explain the differing nonadiabatic S1/S0 crossing rates. The second part of this thesis examines the issues involved with design and construction of a Coincidence Imaging Spectrometer. This type of spectrometer measures the 3-dimensional velocities of both photoelectrons and photoions generated from probing of laser induced photodissociation reactions. Importantly, the photoelectrons and photoions are measured in coincidence from single molecules, enabling measurements such as recoil frame photoelectron angular distributions and correlated photoelectron/photoion energy maps, inaccessible using existing techniques. How to optimize the spectrometer resolution through design, tuning, and calibration is discussed. The power of TRCIS is demonstrated with the investigation of the photodissociation dynamics of the NO dimer. TRPES experiments first identified a sequential kinetic model following 209nm excitation resulting in NO(X) (ground state) and NO(A) (excited state) products. Using TRCIS, it was possible to measure time resolved vibrational energy distributions of the products, indicating the extent of vibrational energy redistribution within the dimers prior to dissociation. Recoil frame photoelectron angular distributions and theoretical support allow identification of a previously disputed intermediate on the dissociation pathway. / Thesis (Ph.D, Chemistry) -- Queen's University, 2007-04-01 10:12:39.968

Page generated in 0.0189 seconds