Spelling suggestions: "subject:"bransformation conduced elasticity"" "subject:"bransformation conduced clasticity""
1 |
Modélisation micromécanique de la plasticité de transformation dans les aciers par homogénéisation numérique fondée sur la TFR / Micromechanical modelling of transformation plasticity in steels based on fast Fourier transform numerical schemeOtsuka, Takayuki 27 January 2014 (has links)
Au cours de processus thermomécaniques engendrant une transformation de phase dans les aciers, une déformation plastique importante peut se produire sous l’effet d’une contrainte appliquée, même si celle-ci est plus faible que la limite d’élasticité de la phase la plus molle. Ce phénomène s’appelle plasticité de transformation ou TRansformation Induced Plasticity (TRIP), et peut jouer un rôle important sur le contrôle des procédés de transformation industriels. Par exemple, au cours du refroidissement par trempe de produits semi-finis ou finis (plaques, tôles, roues, ...), ce phénomène peut affecter la planéité des produits plats et engendrer des contraintes résiduelles qui vont affecter la qualité finale de produits finis. Il s’avère donc important de prévoir cette plasticité de transformation induite par un chargement thermomécanique donné. Dans cette thèse, un modèle micromécanique de plasticité cristalline avec transformation de phase a été développé. Il s’appuie sur l’utilisation de la transformée de Fourier rapide (TFR) développée pour des milieux périodiques. L’expansion volumique induite par une transformation de phase de type diffusive (« Greewood-Johnson effet ») est prise en compte dans le modèle afin d’estimer la plasticité de transformation et le comportement mécanique pendant la transformation de phase. Les résultats obtenus par TFR ont confirmé l’existence d’une relation linéaire entre contrainte appliquée et déformation plastique induite par la transformation, lorsque la contrainte appliquée faible (c’est-à-dire inférieure à la moitié de la limite d’élasticité de la phase la plus molle). Lorsque la contrainte appliquée est plus élevée, le modèle prévoit que cette relation linéaire n’est plus valable, même si la déformation plastique de transformation augmente toujours avec la contrainte ; ceci est bon accord avec des observations expérimentales. L’interaction entre paramètres microstructuraux (tels que texture, morphologie et taille de grains, ...) et mécaniques (contrainte de rappel, sensibilité à la vitesse de déformation, ...) a été analysée. Il a été montré que tous ces paramètres doivent être pris en compte dans l’estimation de la plasticité de transformation. L’effet de l’écrouissage cinématique de la phase mère sur l’anisotropie de déformation induite a égalament été discuté. Par ailleurs, les résultats numériques obtenus par TFR ont été comparés à des résultats issus de modèles analytiques existants et à des mesures expérimentales. Compte tenu du bon accord entre résultats numériques et expérimentaux, les résultats obtenus par TFR ont servi référence pour améliorer les modèles analytiques existants ; ces nouveaux modèles simplifiés s’avèrent plus précis que ceux proposés auparavant. / During phase transformation in steels, when stress is applied, significant large strain can be observed even though the applied stress is much smaller than the yield stress of the softest phase. The phenomenon is called Transformation Plasticity or TRansformation Induced Plasticity (TRIP). Transformation plasticity is known to play an important role during steel producing processes. For example, during quenching process of plates, sheets, wheels and gear products, the phenomenon affects their shape and residual stresses which determines the quality of products. In this PhD thesis, a micromechanical model of crystal plasticity with phase transformation is developed. It takes advantage of the fast Fourier transform (FFT) numerical scheme for periodic media. Volume expansion along with phase transformation (Greenwood-Johnson effect) is taken into account in the model in order to evaluate the transformation plasticity and mechanical behaviour during phase transformation. The FFT results confirm linear relation between applied stress and transformation plastic strain, if the applied stress does not exceed a half the value of yield stress of the parent phase. For relatively large applied stresses, transformation plastic strain increases nonlinearly with respect to the applied stress. These results agree well with experimental ones. The metallurgical and mechanical interactions during phase transformation are also analysed, such as texture, grain morphology, grain size, back stress effect and viscoplastic deformation effect. It is shown that they cannot be neglected for estimating transformation plasticity. Among others, the role of kinematic hardening of the parent phase on the resulting strain anisotropy is discussed. Finally, the FFT numerical results have been compared with existing analytical models as well as experimental results. Moreover, these FFT computations have been used as references to develop new approximate analytical models. They are shown to improve on previous proposals. These new models were confirmed that they estimate well the transformation plasticity than other analytical models which have been treated in this PhD thesis.
|
2 |
超微細粒組織を有するFe-Ni-C準安定オーステナイト合金の変態誘起塑性とマルテンサイト変態に関する研究 / Transformation-Induced Plasticity and Deformation-Induced Martensitic Transformation of Ultrafine-Grained Metastable Austenite in Fe-Ni-C Alloy陳, 帥 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18986号 / 工博第4028号 / 新制||工||1620 / 31937 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 田中 功, 教授 乾 晴行 / 学位規則第4条第1項該当
|
3 |
Effect of Microstructure on Retained Austenite Stability and Tensile Behaviour in an Aluminum-Alloyed TRIP SteelCHIANG, JASMINE SHEREE 25 September 2012 (has links)
Transformation-induced plasticity (TRIP) steels have excellent strength, ductility and work hardening behaviour, which can be attributed to a phenomenon known as the TRIP effect. The TRIP effect involves a metastable phase, retained austenite (RA), transforming into martensite as a result of applied stress or strain. This transformation absorbs energy and improves the work hardening rate of the steel, delaying the onset of necking.
This work describes two distinct TRIP steel microstructures and focuses on how microstructure affects the RA-to-martensite transformation and the uniaxial tensile behaviour. A two-step heat treatment was applied to an aluminum-alloyed TRIP steel to obtain a microstructure consisting of equiaxed grains of ferrite surrounded by bainite, martensite and RA -- the equiaxed microstructure. The second microstructure was produced by first austenitizing and quenching the steel to produce martensite, followed by the two-step heat treatment. The resulting microstructure (labelled the lamellar microstructure) consisted of elongated grains of ferrite with bainite, martensite and RA grains. Both microstructural variants had similar initial volume fractions of RA. A series of interrupted tensile tests and ex-situ magnetic measurements were conducted to examine the RA transformation during uniform elongation. Similar tests were also conducted on an equiaxed microstructure and a lamellar microstructure with similar ultimate tensile strengths.
Results show that the work hardening rate is directly related to the RA transformation rate. The slower transformation rate, or higher RA stability, that was observed in the lamellar microstructure enables sustained work hardening at high strains. In contrast, the equiaxed microstructure has a lower RA stability and thus exhibits high values of work hardening at low strains, but the effect is quickly exhausted. Several microstructural factors that affect RA stability were examined, including RA grain size, aspect ratio, carbon content and spatial distribution of the phases. Two of these factors were characteristic of only the lamellar microstructures and led to higher RA stabilities: elongated RA grains and RA grains being primarily surrounded by bainite. The results were also compared with previous work on a silicon-alloyed TRIP steel to show that the aluminum-alloyed compositions could achieve similar, if not better, combinations of strength and ductility. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-09-24 16:52:28.032
|
4 |
Transformation-Induced Plasticity and Deformation-Induced Martensitic Transformation of Ultrafine-Grained Metastable Austenite in Fe-Ni-C Alloy / 超微細粒組織を有するFe-Ni-C準安定オーステナイト合金の変態誘起塑性とマルテンサイト変態に関する研究Chen, Shuai 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18986号 / 工博第4028号 / 新制||工||1620(附属図書館) / 31937 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 田中 功, 教授 乾 晴行 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
5 |
Microstrain Partitioning, TRIP Kinetics and Damage Evolution in Third Generation Dual Phase and TRIP-Assisted Advanced High Strength SteelsPelligra, Concetta January 2024 (has links)
Lightweighting demands have been achieved by third generation (3G) Advanced High Strength Steels (AHSSs) by a means of increased strength. The challenge faced in doing so, however, is in ensuring that ductility and crashworthiness is efficiently retained. Key methods in which automotive research has been invested to achieve this strength-ductility balance is by microalloying to promote grain refinement, the introduction of precipitates, and the effective use of plasticity enhancing mechanisms. Specifically, the ability to tailor the stability of retained austenite during deformation has been crucial in manipulating the strength-to-ductility ratio of 3G AHSSs using the Transformation Induced Plasticity (TRIP) effect. On the other hand, dual phase (DP) (i.e: non-TRIP-assisted steels) continue to be most significantly manufactured due to their robust thermomechanical processing but are also compromised by their poor damage tolerance. Hence, considerable reports are available regarding the damage tolerance of DP steels, but the ability for the volume expansion associated with the austenite-to-martensite transformation to suppress damage evolution and enhance a steel’s local formability has not yet been thoroughly investigated.
Nonetheless, the damage processes that lead to fracture in 3G AHSSs are complex. A full understanding of the underlying phenomena requires a careful assessment of the strain partitioning amongst phases, how the microstructure evolves with strain and how damage, in the form of voids and micro-cracks, nucleates and grows. This can only be accomplished by applying a range of methodologies, including microscopic Digital Image Correlation (µDIC), X-ray Computed Microtomography (µXCT), Electron Backscattered Diffraction (EBSD) and X-ray Diffraction (XRD), all of which can be tracked as deformation proceeds.
This PhD thesis uses a novel post µDIC data processing technique to prove that a reduction in strain gradient, linked to the evolution Geometrically Necessary Dislocations (GNDs), at dissimilar phase interfaces is attainable with vanadium-microalloying and with use of the TRIP effect. A local strain gradient post µDIC data processing technique was developed and first applied on 3G DP steels to show that the microcompatibility between ferrite and martensite directly at the interface is considerably improved with vanadium-microalloying. This in turn microscopically explains this DP steel’s increased local formability/damage tolerance with vanadium micro-additions. Moreover, when applying this novel µDIC technique on two other 3G experimental steels of interest, an ultrahigh strength Quench & Partition (Q&P) steel and a continuous galvanizing line (CGL)-compatible Medium-Mn (med-Mn) steel, an even slower evolution of microstrain gradients at dissimilar phase interfaces was observed. This indicates that, although vanadium-microalloying can improve the damage tolerance of a DP steel, its ability to achieve the ultrahigh strengths is a direct result of the severe inhibition of dislocation motion at dissimilar phase boundaries. Eventually, at high strains, these local strain gradients cannot be maintained and results in premature damage nucleation. By comparison, at such high strains, distinct evidence of damage nucleation was not apparent in the 3G TRIP-assisted steels which is the result of a slow strain gradient evolution delayed by the effective use of TRIP.
This finding triggered a further investigation into isolating the impact the rate of TRIP exhaustion has on damage development. By intercritically annealing this prototype med-Mn steel (0.15C-5.8Mn-1.8Al-0.71Si) with a martensitic starting microstructure, within a narrow temperature interval (from 665 to 710°C), it was possible to make significant changes in the steel’s rate of TRIP exhaustion without making considerable changes to its physical microstructure. This steel exhibits the largest true strain at fracture (ɛf = 0.61), meets U.S. Department of Energy (DoE) mechanical targets (28,809 MPa%), and shows sustained monotonic work hardening when intercritically annealed at an intermediate IA temperature of 685°C for 120s. In addition, this IA condition showed optimal damage tolerance properties as an abundance of voids nucleated during its tensile deformation, but their growth was suppressed by prolonging TRIP over a large strain range. There is reason to believe that the heterogeneous distribution of austenite and Mn throughout this 685°C IA condition compared to the other two enabled its suppressed TRIP kinetics and in turn improved damage tolerance.
The impact that changes in stress-state, from a stress triaxiality of 0.33-0.89, has on microstrain partitioning, TRIP kinetics and damage evolution was tested on this med-Mn at its 685°C IA condition. With the machining of notches on tensile specimens, it was seen that a high stress triaxiality (0.74-0.89) accelerated the rate of TRIP, whereas the introduction of shear, through a misaligned notched specimen design, delayed TRIP kinetics. The change in mean stress imposed by the notches was deemed to have played an active role in TRIP exhaustion during the material’s tensile deformation. A unique electropolishing micro-speckle patterning technique was applied to show that the amount of strain that can be accommodated by the steel’s the polygonal ferrite-tempered martensitic regions are considerably impacted by external modifications in stress-state. While damages studies using different such notched tensile geometries revealed that once a critical void size is reached in this med-Mn steel, coalescence proceeds at an increasing, exponential rate up to fracture. It continues to remain a challenge to quantify the effects microstrain partitioning, TRIP kinetics and damage evolution separately, opening new avenues for future experimental and modeling investigations. / Thesis / Candidate in Philosophy / A lot of research up to now has been invested in the automotive industry to create steels that are lightweight, strong and show improved crashworthiness. The means by which this has been achieved is with the use of innovative processing routes to manufacture and implement Advanced High Strength Steels (AHSSs) in a vehicle’s body-in-white. Nonetheless, the constant global pressure to reduce greenhouse gas emissions has eventually driven research to a third-generation class of ultrahigh strength, lightweight AHSSs. These steels retain the weight savings of their second-generation counterparts but are more cost-effective to manufacture and can be adapted to current industrial line capabilities. Considerable work has been done to enable the manufacturing of 3G steels, yet the steel characteristics which underpin fracture, thereby affecting the crashworthiness of these steels, continues to be weakly understood. As such, at a microscopic scale, this thesis uses three different promising 3G AHSSs candidates to evaluate the impact their unique steel characteristics has on the ability to resist damage evolution and fracture.
|
6 |
Relation microstructure - comportement macroscopique dans les aciers : effet de la taille de grain austénitique sur la plasticité de transformation / Microstructure - macroscopie behavior relationship in steels : effect of the austenite grain size on transformation plasticityBoudiaf, Achraf 28 March 2011 (has links)
Ce travail est une contribution à l'étude des conséquences mécaniques des transformations de phase à l'état solide dans les aciers, en particulier la plasticité de transformation (TRIP), en prenant en compte l'effet de la taille de grain austénitique (AGS). L'évolution de l'AGS a été étudiée sous différentes conditions d'austénitisation. Des essais de plasticité de transformation ont été conduits avec les mêmes conditions d'austénitisation afin d'observer l'évolution du TRIP avec l'AGS. Trois types de chargement mécanique sont considérés : la traction uniaxiale, la torsion uniaxiale et le cas biaxial de traction + torsion. Les résultats montrent que : i) le TRIP augmente avec l'AGS dans le cas de la traction ; ii) il est indépendant de l'AGS pour la torsion; iii) pour le cas du changement biaxial, le TRIP diminue légèrement. Ceci montre que les modèles décrivant le TRIP doivent être revus afin de prendre en compte l'AGS. / This work is a contribution to the study of mechanical consequences of solid-solid state phase transformations in steels, particularly the Transformation Induced Plasticity (TRIP), and the effect of the Austenite Grain Size (AGS). The evolution of AGS was studied taking into account different austenitization conditions. Then, TRIP tests were carried out with the same conditions to observe the evolution of TRIP with AGS. Three types of loading are considered: the uniaxial tension case, torsion case and biaxial tension and torsion case. The resuslts show that: i)the TRIP increase with AGS in the tensile case. ii) It is independant for the torsion case. iii) For the biaxial loading case, the TRIP decreases slightly. This shows that the micromechanical models describing the TRIP should be reviewed to take account of the AGS.
|
7 |
Characterization of the Factors Influencing Retained Austenite Transformation in Q&P SteelsAdams, Derrik David 02 April 2020 (has links)
Formable Advanced High-Strength Steels (AHSS) have a unique combination of strength and ductility, making them ideal in the effort to lightweight vehicles. The AHSS in this study, Quenched and Partitioned 1180, rely on the Transformation Induced Plasticity (TRIP) effect, in which retained austenite (RA) grains transform to martensite during plastic deformation, providing extra ductility via the transformation event. Understanding the factors involved in RA transformation, such as local strain and grain attributes, is therefore key to optimizing the microstructure of these steels. This research seeks to increase understanding of those attributes and the correlations between microstructure and RA transformation in TRIP steels. To measure local strain, the viability of using forescatter detector (FSD) images as the basis for DIC study is investigated. Standard FSD techniques, along with an integrated EBSD / FSD approach (Pattern Region of Interest Analysis System), are both analyzed. Simultaneous strain and microstructure maps are obtained for tensile deformation up to around 6% strain. The method does not give sub-grain resolution, and surface feature evolution prevents DIC analysis across large strain steps; however, the data is easy to obtain and provides a natural set of complementary information for the EBSD analysis. In-situ tensile tests combined with EBSD allow RA grain and neighboring attributes to be characterized and corresponding transformation data to be obtained. However, pseudo-symmetry of the ferrite (BCC) and martensite (BCT) phases prevents EBSD from accurately identifying all phases. Measuring the relative distortion of the crystal lattice, tetragonality, is one approach to identifying the phases. Unfortunately, small errors in the pattern center can cause significant errors in tetragonality measurement. Therefore, this research utilizes a new approach for accurate pattern center determination using a strain minimization routine and applies it to tetragonality maps for phase identification. Tetragonality maps based on dynamically simulated patterns result in the most accurate maps and can also be used to predict approximate local carbon content. Machine learning is then used on the collected data to isolate key attributes of RA grains and provide a decision tree model to predict transformation based on those attributes. Among the most relevant attributes found, RA grain area, RA grain shape aspect ratio, a “hardness” factor, and major axis orientation are included. Possible correlations between these factors and transformation improve understanding of relevant attributes and show the advantage that machine learning can have in unravelling complex material behavior.
|
8 |
Modélisation de la plasticité due à une transformation martensitique dans les aciers / Modelling of plasticity caused by a martensitic transformation in steelsMeftah, Salem 26 October 2007 (has links)
Cette thèse porte sur l'analyse d'un phénomène particulièrement important dérivant des conséquences mécaniques des transformations de phases solide-solide dans les aciers : la plasticité de transformation ou TRIP (Transformation Induced Plasticity) et son interaction avec la plasticité classique. Ce sujet est abordé à la fois par des investigations expérimentales et par une approche de modélisation numérique, pour les transformations martensitiques. / This thesis concerned with the analysis of a particularly important phenomenon which corresponds to one of the mechanical consequences of solid-solid phase transformations in steels: the transformation plasticity or TRIP (TRansformation Induced Plasticity) and its interaction with classical plasticity. This subject is addressed from the point of view of experimental investigations as well as with a nuimerical modelling approach, concerning martensitic transformations.
|
9 |
Visco-plasticité de transformation de phase diffusive : modélisation numérique et caractérisation des effets de la viscosité / Visco-plasticity of diffusive phase transformation : numerical modeling and characterization of the viscosity effectsEl Haj Kacem, Maher 07 July 2016 (has links)
Dans cette étude, nous analysons les conséquences mécaniques des transformations de phase diffusives, particulièrement la plasticité de transformation ou TRIP (TRansformation Induced Plasticity) ainsi que le comportement élasto-viscoplastique. Cette plasticité de transformation, explicable par le mécanisme de Greenwood-Johnson, est souvent décrite avec le modèle de Leblond qui fait l'hypothèse d'un comportement élastoplastique. Dans ce modèle comme dans la majorité des analyses expérimentales et des modélisations (analytiques, par éléments finis, FFT ou encore champ de phase), une des hypothèses principales est de ne pas prendre en compte le caractère visqueux du comportement. Or plusieurs études récentes montrent que le comportement des deux phases (parente et produite) peut être très sensible au taux de déformation imposé, particulièrement à haute température. D'où l'intérêt de développer une modélisation rendant compte des effets visqueux présents lors de certaines transformations. Pour ce faire, nous adoptons une modélisation numérique où le comportement de chaque phase est décrit par une loi élasto-viscoplastique à écrouissage mixte associée à la loi de Norton ; la cinétique de transformation est imposée et le problème d'interactions mécaniques entre phases est traité par la méthode des éléments finis. D'une part, la contribution de la viscosité au TRIP est quantifiée pour différents taux de déformation imposés durant la transformation de phase. D'autre part, l'effet du taux de transformation (configuration arbitraire) sur la prédiction du TRIP est évalué et caractérisé. Une extension des modèles existants (à cinétique périodique et aléatoire) est proposée. Elle consiste d'abord à étudier et évaluer l'effet de la morphologie de germe ainsi que l'anisotropie de croissance sur la prédiction du TRIP. Ensuite, une amélioration avec un modèle anisotherme, basé sur des mesures expérimentales existantes, a été introduite. Elle consiste principalement à tenir compte de la variation des propriétés mécaniques en fonction de la température. Les analyses montrent que la prise en compte de la viscosité peut conduire à des effets importants sur la prédiction du TRIP par rapport aux résultats obtenus avec un modèle élastoplastique classique. Elles montrent en particulier, en configuration anisotherme, une amélioration de la prédiction du TRIP mesuré expérimentalement lors de la transformation perlitique d'un acier 100Cr6 [Tahimi, 2012]. Cette étude permet par ailleurs de dégager des tendances évidentes dans les relations entre le TRIP et l'histoire de la transformation : chargement mécanique et cinétique de transformation, morphologie des germes et anisotropie de croissance. Ces résultats pourront contribuer à l'élaboration d'un modèle analytique simple prenant en compte la viscosité. / In this study, the mechanical consequences of phase transformations in steel, particularly, the TRansformation Induced Plasticity TRIP as well as the elasto-viscoplastic behavior has been analyzed. This transformation plasticity, due to the Greenwood-Johnson mechanism, is often described with the model of Leblond with the assumption of an elastoplastic behavior. Moreover, in the majority of experimental analysis or numerical finite elements modeling FEM or phase field modeling PFM, the viscous criteria were not considered. However, several recent studies have demonstrated that both phases (parent and product) show high strain-rate sensitivity at elevated temperatures. Hence, the principal interests using the FEM modeling to extend these main reference models of [Leblond, 89] and [Taleb-Sidoroff, 2003], with taking into account the viscous effects, which are present during some phase transformations, especially at high temperatures. To do this, the behavior of each phase is described by an elasto-viscoplastic law with mixed hardening associated to the Norton law. The transformation kinetics is imposed and the problem of mechanical interactions between phases is processed by the finite element method. On the one hand, the contribution from viscosity to TRIP was quantified for different strain-rate during phase transformation. On the other hand, the effect of an arbitrarily-set of transformation-rate in the FEM simulations was evaluated and characterized. An extension of the existing models (for periodic and random kinetics) is proposed. It consists at first in studying and in evaluating the effect of both the morphology of nuclei and the growth anisotropy, on the prediction of TRIP. Then, an improvement with non-isothermal model, based on existing experimental measures, was introduced. It consists mainly in taking into account the variation of the mechanical properties of the mixture of both phases, according to the temperature. The predictions show that in such cases, the consideration of the viscosity can lead to major changes of the estimated TRIP compared with results obtained from a classic plastic model. Also, the prediction of TRIP can be significantly influenced by the choice of the morphology of germs and by the type of growth: isotropic or anisotropic. These improvements, particularly with the non-isothermal configuration, show a good agreement with experimental measures of TRIP on the 10006 steel during pearlite phase transformation [Tahimi, 2012]. This study allows besides, releasing obvious trends in the relations between the TRIP and the history of the phase transformation: mechanical loading and kinetics of transformation, morphology of nuclei and growth anisotropy. These results can contribute to the elaboration of a simple analytical model taking into account the viscous criteria.
|
10 |
Influence de la transformation martensitique induite par la déformation sur le comportement mécanique d’aciers inoxydables duplex / Influence of strain induced martensitic transformation on the mechanical behavior of duplex stainless steelsLechartier, Audrey 15 December 2015 (has links)
Les aciers inoxydables duplex présentent une combinaison intéressante entre des propriétés mécaniques élevées, une faible conductivité thermique et un coût relativement faible. Ils sont couramment employés dans le domaine du bâtiment comme rond à béton, application qui requière notamment une résistance élevée (Rm > 950 MPa) et une ductilité importante (A% > 15). Cette thèse a pour objectif d’améliorer le compromis résistance / allongement, en développant de nouvelles nuances duplex présentant une transformation martensitique induite par la plasticité (effet TRIP) aux caractéristiques contrôlées. L’optimisation de ce compromis a nécessité en particulier une compréhension détaillée des mécanismes de transformation et de déformation plastique associés à chaque phase : la ferrite (BCC), l’austénite (FCC) et la martensite (BCC).L’influence de la transformation martensitique sur le comportement mécanique est étudiée pour quatre alliages duplex de stabilité variable de la phase austénitique en fonction de leur composition chimique. L’influence d’une microstructure multiphasée sur la cinétique de transformation est déterminée grâce à l’élaboration de trois nuances modèles représentant respectivement une nuance duplex et es deux compositions représentatives de ses constituants austénite et ferrite. L’utilisation de plusieurs techniques de caractérisation à différentes échelles a permis de décrire à la fois les mécanismes de transformation de phase et leur cinétique en fonction de la déformation, donnant ainsi accès à leur influence sur le comportement mécanique. L’étude des champs cinématiques a mis en évidence l’impact de la phase martensitique sur la répartition des déformations dans la microstructure multi-phasée. Finalement l’utilisation d’un modèle mécanique prenant en compte explicitement la transformation martensitique a permis de reproduire le comportement mécanique d’un alliage duplex. / Duplex stainless steels offer an attractive combination of high mechanical properties, low thermalconductivity and a relatively low cost. They are increasingly used as structural materials such as inthe construction sector as concrete reinforcement bars, where both high strength (Rm > 900 MPa)and high elongation to failure (A% > 15 %) are required. This thesis aims at improving the strength/ elongation compromise by developing new duplex stainless steel compositions experiencing a wellcontrolledmartensitic transformation induced by plasticity (TRIP effect). The optimisation of thiscompromise has required a good understanding of the transformation mechanisms and of plasticdeformation associated with each phase : ferrite (BCC), austenite (FCC) and martensite (BCC).The influence of martensitic transformation on mechanical behavior has been studied in four duplexgrades of variable austenite stability as a function of their chemical composition. The influence ofmultiphase microstructure on martensitic transformation kinetics has been determined by makingthree alloys respectively representative of a duplex grade and its two constituents (austenite andferrite). Using multiple characterization techniques at different scales has allowed determiningboth the transformation mechanisms and its kinetics as a function of strain, giving thus accessto the influence of transformation on the mechanical behavior. The study of kinematic fields hashighlighted the impact of the martensitic phase on the distribution of deformations. Finally, theuse of a mechanical model taking explicitly into account the phase transformation has allowed theduplication of the mechanical behavior of a duplex stainless steel.
|
Page generated in 0.1078 seconds