31 |
Effect of Salinity Stress on Development of Pythium Blight of Agrostis palustrisRasmussen, S. L., Stanghellini, M. E. January 1988 (has links)
Salinity stress predisposed cultivar Penncross creeping bentgrass to cottony blight caused by Pythium aphanidennatum at two temperature regimes. At 25-32 C, complete necrosis of all inoculated plants occurred at electrical conductivity (Ec) levels from 4.3-7.1 ds/m in 2 days, whereas at Ec levels of 0.5-2.8 ds/m death occurred within 3 days. At 25-27 C, complete necrosis of all inoculated plants occurred at Ec levels from 4.3-7.1 ds /m within a period of 5 days; no death was observed in control or inoculated plants at an Ec level of 0.5 ds/m. Increased salinity levels apparently affected the bentgrass rather than P. aphanidermatum. Mycelia' growth rate of the fungus was increased only slightly by salinity levels up to 7.1 ds/m. Zoospore production of P. aphanidermatum and two other species of Pythium decreased with increasing salinity levels up to 7.1 ds/m; production was completely inhibited at 14.2 ds/m.
|
32 |
Ryegrass Turf Trials for 1987-1988Kopec, D. M., Mancino, C. F., Petty, M. J., Salo, L. January 1988 (has links)
No description available.
|
33 |
The Influence of Gypsum on the Physical and Chemical Properties of Turfgrass SoilsMancino, C. F., Kopec, D. M., Salo, L. January 1988 (has links)
No description available.
|
34 |
Estimating Turfgrass Water Use with AZMETBrown, P., Kopec, D., Mancino, C. January 1988 (has links)
The Arizona Meteorological Network provides weather-based estimates of reference evapotranspiration (ETo) for much of southern, central and western Arizona. A simple 3-step procedure to convert ETo data into reliable estimates of turfgrass water use is described The procedure requires that AZMET ETo values be multiplied by a correction factor known as a crop coefficient (Kc). The selection of the Kc depends on the type and height of the turfgrass as well as desired turf quality. The procedure is well adapted for use on computers.
|
35 |
The Influence of Effluent Irrigation on Specific Soil Microbial Populations and ParametersMancino, C. F., Salo, L., Hayes, A., Pepper, I., Kopec, D. M. January 1988 (has links)
No description available.
|
36 |
Irrigation management effects on nitrate leaching and mowing requirements of tall fescueChabon, Joshua D. January 1900 (has links)
Master of Science / Department of Horticulture, Forestry, and Recreation Resources / Dale J. Bremer / Jack D. Fry / Irrigation management may influence nitrate leaching under tall fescue (Festuca arundinacea) and also affect its mowing requirements. Two experiments were conducted on tall fescue growing on a Chase silt loam soil near Manhattan, Kansas. Each experiment was arranged in a split-plot design, with irrigation treatments applied to whole plots: 1) frequency-based irrigation, water was applied three times weekly to deliver a total of 19 mm water wk⁻¹ regardless of weather conditions; and 2) soil moisture sensor (SMS)--based irrigation, 34 mm of water was applied when soil dried to a predetermined threshold. In the first experiment, sub-plots consisted of unfertilized turf, and N applied as urea or polymer-coated urea at 122 and 244 kg ha⁻¹ yr⁻¹. Suction lysimeters at a 0.76 m depth were used to extract nitrate leachate bi-monthly. Turf quality was rated weekly. In the second experiment, subplots were mown at 5.1 cm or 8.9 cm, based upon the 1/3 rule, with or without monthly applications of the growth regulator trinexapac-ethyl (TE). Data were collected on total mowings and visual turf quality. Soil moisture sensor-based irrigation resulted in water savings of 32 to 70% compared to frequency-based irrigation. Leaching levels did not exceed 0.6 mg L⁻¹ and no differences in leaching were observed between irrigation treatments or among N sources. All fertilized turf had acceptable quality throughout the study. In the second experiment, irrigation strategy did not influence total number of mowings. In the first year, TE application reduced total mowings by 3 in tall fescue mowed at 5.1 cm, but only by 1.5 when mowed at 8.9 cm. In the second year, mowing at 8.9 vs. 5.1 cm or using TE vs. not resulted in a 9% reduction in total mowings each. The SMS-based irrigation saved significant amounts of water applied compared to frequency-based irrigation, while maintaining acceptable quality, but irrigation treatments did not affect nitrate leaching or mowing frequency in tall fescue on fine silt-loam soil. Nitrate leaching, regardless of amount, was well below the standards set for human health (10 mg L⁻¹). Applications of TE are more beneficial for turfgrass mowed at lower cutting heights.
|
37 |
Assessment of susceptibility of creeping bentgrass cultivars to dollar spot, sensitivity of Kansas isolates of Sclerotinia homoeocarpa to demethylation inhibitor fungicides, and determination of mutations in beta-tubulin gene associated with resistanceOstrander, Jesse Carl January 1900 (has links)
Master of Science / Department of Plant Pathology / Megan Kennelly / Dollar spot disease of turfgrass, caused by the fungus Sclerotinia homoeocarpa, is the most economically important disease of intensively managed turfgrass such as creeping bentgrass (Agrostis stolonifera) in golf course fairways and putting greens. While several cultural management practices can lessen the severity of the disease, fungicide applications are necessary to manage the disease to acceptable levels. Host resistance is another avenue of improving the quality of turfgrass in response to dollar spot disease, but more information on cultivar susceptibility levels is necessary. Many fungicides are available to control dollar spot, but S. homoeocarpa has shown resistance to both demethylation inhibitor (DMI) and benzimidazole class fungicides. The objectives of this thesis were: (1) to evaluate 15 cultivars of creeping bentgrass under putting green and fairway management for both overall quality and disease severity of dollar spot in the presence and absence of fungicide applications; (2) to determine the sensitivity of Kansas S. homoeocarpa isolates to the DMI fungicides propiconazole, metconazole, tebuconazole, and triticonazole using in vitro mycelia growth assays; (3 to determine a best discriminatory dose concentration for each DMI fungicide that will provide for rapid testing of relative sensitivity, and (4) to sequence the entire β-tubulin gene of several resistant and sensitive isolates to determine mutations associated with resistance. There were differences in turfgrass quality among the 15 cultivars at putting green height but not fairway height. There were no significant differences in disease. In the fungicide resistance assays, the mean EC50 values were 0.0163, 0.038, 0.0612, and 0.0994 µg/ml for metconazole, propiconazole, tebuconazole, and triticonazole, respectively. Correlations were significant and positive for all pairwise comparisons of log10EC50 values. Regressions using discriminatory concentrations tested were significant. The most predictive concentrations were 0.01, 0.05, 0.05, and 0.10 µg/ml a.i, for metconazole, propiconazole, tebuconazole, and triticonazole, respectively. The entire β-tubulin gene was sequenced for four resistant and four sensitive isolates. The resistant isolates all harbored a substitution of alanine for glutamic acid at codon 198 (E198A).
|
38 |
Evaluation of tall fescue-zoysiagrass polystands and new zoysiagrass genotypes for use in the transition zoneXiang, Mingying January 1900 (has links)
Doctor of Philosophy / Department of Horticulture and Natural Resources / Jack Fry / Megan Kennelly / Zoysiagrasses (Zoysia spp.) use C4 metabolism and are more drought resistant than C3 grasses. However, the long dormancy period between autumn and spring limits the use of zoysiagrass by homeowners and professional turfgrass managers. In addition, large patch has become the primary pest on zoysiagrass, and improved cultivars with good cold hardiness and large patch resistance are needed in the transition zone. Tall fescue (Schedonorus arundinaceus Schreb), a C3 grass, is used frequently in Kansas due to its heat and drought tolerance compared to some other C3 grasses. However, brown patch (Rhizoctonia solani) is the main disease limiting its growth in summer. Alternatively, mixing zoysiagrass with tall fescue may help reduce brown patch incidence. The objective of these projects were to: (1) evaluate methods for establishing a perennial mixture of seeded zoysiagrass and tall fescue; (2) determine whether a zoysiagrass/ tall fescue polystand is less susceptible to brown patch and results in improved summer quality compared to a tall fescue monostand; and (3) evaluate experimental zoysiagrass genotypes to identify one or more potential new cultivars which have high quality and tolerance to cold and large patch. I found that polystands of zoysiagrass and tall fescue were most successfully established by seeding zoysiagrass at 49 kg ha-1 in June and tall fescue at 392 kg ha-1 in September into the established zoysiagrass sward. Polystand establishment was also superior at a 1.9 cm mowing height than a 5.1 cm mowing height. The resulting mixture resulted in improved turf color in late fall and early spring compared to a zoysiagrass monostand. In addition, using a zoysiagrass-tall fescue polystand reduced brown patch by up to 21% compared to a tall fescue monostand. In the zoysiagrass breeding project, I identified ten progeny out of sixty evaluated that had better tolerance to large patch (up to 40 % less plot area affected) and better quality compared to Meyer zoysiagrass, which is the standard cultivar used in the transition zone.
|
39 |
Home Consumer Perceptions about Landscape Water Conservation and Relationships with Historical UsageMilberger, Whitney F. 2010 May 1900 (has links)
Water is considered to be one of the most limited and precious resources on Earth.
Due to this scarcity, water conservation has become essential in order to preserve water
resources. Landscape plant material brings quality to urban and suburban lifestyles and
increases value to home properties. Yet it has been shown that an excess amount of water
is often applied to landscapes when the plant material does not in fact need the
supplemental irrigation.
A researcher based survey, the Landscape Water Conservation Survey, was sent to
799 single family homes in the College Station, TX. Data collection occurred from
November 2005 through August 2006 with a 27% return. The survey asked the recipients
14 questions on water use and home consumers? perceptions. Historical landscape water
usage was compiled from 2000-2002 which included actual water use, taxable value, of
the residence, heated area, and the water meter identification number for these selected
households supplied by The City of College Station Water Utilities.
The survey indicates a strong disconnect between the amount of irrigation
landscape plant materials need and the quantity of water that is actually applied.
Surveyed home consumer perceptions demonstrate excessive amounts of irrigation were
normally applied to landscape plant material when no irrigation was needed due to
rainfall. Many respondents to The Landscape Water Management Survey indicated that
they believed to have efficient irrigation practices in place when in actuality they do not.
Educational resources are needed to teach the public on the amounts of irrigation
landscape plant materials actually need, how to apply measured home irrigation practices,
the principles of water conservation, and meeting the water requirements of varied
landscape plant material. If these could be established and implemented, there would be a
higher rate of conserving water and providing plant material with the sufficient amount of
irrigation required.
|
40 |
Evapotranspiration, Consumptive Water Use, And Responses To Self-Imposed Drought Of Three Warm Season Grasses Grown In A Semi-Arid RegionHenry, William Nathan January 2007 (has links)
Evapotranspiration rates (ET) and consumptive water use (CWU) were measured for three desert turfgrasses using weighing lysimeters with a calcined clay growth medium. Water use rates were compared over a two-year study for 'Sea Isle I' seashore paspalum (Paspalum vaginatum) and A138 desert saltgrass (Distichlis spicata), along with 'Tifway' bermudagrass (Cynodon dactylon x Cynodon transvaalensis). Saltgrass showed elevated leaf canopy temperatures for extended periods before exhibiting visible wilt symptoms while 'Tifway' bermudagrass and seashore paspalum wilted readily, even at relatively high soil water contents. Saltgrass transpired for 11.9 d on average before drought stress was observed. Seashore paspalum maintained leaf turgor, on average 5.6 d without irrigation, whereas 'Tifway' bermudagrass averaged 4.0 d before requiring irrigation. The two-year average Kc values for three grasses before self-imposed drought was expressed by visible leaf wilting were 0.85, 0.79, and 0.74, for A138 saltgrass, 'Sea Isle I' seashore paspalum, and 'Tifway' bermudagrass, respectively.
|
Page generated in 0.0199 seconds