• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Leveraging green hydrogen to decarbonise the aviation industry : A case study on electrofuels in Sweden / Användning av grön vätgas för att dekarbonisera flygindustrin : En fallstudie om elektrobränslen i Sverige

Bergene, Jakob, Bruchhausen, Jonathan January 2023 (has links)
For the EU to reach its 2050 climate targets the aviation industry that is highly dependent on fossil fuels needs to drastically reduce its emissions. In the decarbonisation of the aviation industry drop-in sustainable aviation fuels (SAFs) have been identified as a promising solution to abate the industry’s emissions. To increase the adoption of SAFs, The EU has announced a proposal called ReFuelEU Aviation, introducing obligated blend mandates for SAFs that airlines and fuel suppliers need to comply with, starting at 2% in 2025 going up to 70% by 2050. A subset of SAFs called electrofuels, made from green hydrogen and carbon dioxide, could become essential in the sustainability transition with an emission abatement potential of up to 95% compared to fossil jet fuel. However, there exist no large scale production of electrofuels and previous research suggests that they will be several times more expensive to produce than their fossil counterparts, highlighting that the production and adoption will be challenging. In this thesis we first study how and under which conditions electrofuel value chains can develop in Sweden and second to which extend locally-produced electrofuels may be economically feasible. The former was studied qualitatively and the latter quantitatively, which together identified challenges and opportunities for electrofuels to decarbonise the aviation industry. The qualitative analysis was researched by conducting semi-structured interviews with industry actors, researching the current policy landscape and analysing the findings from a theoretical lens of ‘complementarity formation mechanisms in technology value chains’. The quantitative analysis was researched by a techno-economic assessment of e-kerosene production in Sweden using an alkaline electrolyser, different carbon capture technologies and a Fischer Tropsch fuel synthesis. In the qualitative analysis we found, in contrast to previous research, that the incremental cost associated with adoption of electrofuels is not necessarily the greatest concern. Instead, the value chain development of electrofuels is dependent on synchronised development of the input sectors renewable energy, hydrogen production and carbon capture technologies. Industry actors may not invest in large scale electrofuel production until they have secured a supply for renewable energy. There is also a liability of limited scalability in these, affected by slow permit processes and construction of new renewable energy, risking that electrofuels are not produced sustainably and at a high cost. We also found that producing bio-electrofuels, utilising lignocellulosic biomass from e.g., forest residue, can become important for Swedish fuel production. In the quantitative analysis the results show a levelised cost of e-kerosene of 3.8-6.1 times higher than the fossil jet fuel price of April 2023, sensitive to changes in energy price and capital expenditures of electrolysers for hydrogen production. We also found that the source of carbon capture affects the price, where direct air capture (DAC) increased total costs by 32% and 25% compared to bioethanol and pulp and paper, respectively. The levelised cost yield emission abatement costs between 457-1,042 €/tonne CO2e, depending on energy scenario and emissions abatement potential. In conclusion, we have found that the production of electrofuels for aviation is contingent on low energy prices, point-source carbon capture and economies of scale in hydrogen production. This highlights that renewable energy in combination with technological developments in hydrogen and carbon production is essential to establish a sustainable value chain. This can become challenging as other industries, such as green steel, will require similar inputs for production, emphasising that the location of electrofuel plants highly impacts the business case and possibility to produce relatively sustainable and cost competitive products. / För att EU ska nå sina klimatmål för 2050 behöver flygindustrin, som är beroende av fossila bränslen, drastiskt minska sina utsläpp. I dekarboniseringen av flygindustrin har hållbara flygbränslen (SAF) identifierats som en potentiell lösning för att minska utsläppen i industrin. EU har tagit fram förslaget ReFuelEU Aviation som inför obligatoriska inblandningskrav av SAF för flygbolag och bränsleleverantörer, med start 2025 på 2% och en ökning till 70% fram till år 2050. En subkategori av SAF kallade elektrobränslen, som tillverkas av grön vätgas och koldioxid, kan bli avgörande i hållbarhetsomställningen med en potential att reducera utsläpp med upp till 95% jämfört med fossilt flygbränsle. Samtidigt finns det idag ingen storskalig produktion av elektrobränslen och forskare och branschexperter tror att produktionskostnaderna kommer att vara flera gånger dyrare än den fossila motsvarigheten, vilket antyder att produktionen av elektrobränslen kommer medföra utmaningar. I denna uppsats studerar vi först hur och under vilka förutsättningar elektrobränsle-värdekedjor kan utvecklas i Sverige, och sedan under vilka förutsättningar produktion av elektrobränslen kan vara ekonomiskt konkurrenskraftigt. Den första frågeställningen studerades kvalitativt och den andra kvantitativt, vilka tillsammans identifierade utmaningar och möjligheter för produktion och användning av elektrobränslen för att dekarbonisera flygindustrin. Den kvalitativa analysen bestod av semistrukturerade intervjuer med aktörer inom branschen och forskning kring det nuvarande policylandskapet. Dessa resultat analyserades sedan utifrån en teoretisk lins av ’komplementära formationsmekanismer i teknologiska värdekedjor’. Den kvantitativa delen analyserades genom en tekno-ekonomisk analys av e-fotogenproduktion i Sverige genom en alkalisk elektrolysör, olika tekniker för koldioxidavskiljning och bränslesyntes via Fischer-Tropsch. I den kvalitativa analysen fann vi, i motsats till tidigare forskning, att de inkrementella kostnaderna för införandet av elektrobränslen inte nödvändigtvis är det största hindret. I stället är utvecklingen av elektrobränsle-värdekedjor beroende av en synkroniserad utveckling av förnybar energi, vätgasproduktion och koldioxidavskiljningstekniker då industriella aktörer kan vara motvilliga att investera i storskalig elektrobränsleproduktion innan de har en säkrat tillgång av förnybar energi. Det finns också en risk för begränsad skalbarhet på grund av långsamma tillståndsprocesser för konstruktion av ny förnybar energi, vilket kan leda till att elektrobränslen inte produceras hållbart och till höga kostnader. Vi fann också att produktion av bio-elektrobränslen, genom att använda lignocellulistisk biomassa från exempelvis skogsrester, kan bli viktigt för den svenska bränsleproduktionen. I den kvantitativa analysen visade resultaten att kostnaden för e-fotogen är 3.8-6.1 gånger högre än den fossila motsvarigheten och att priset var känsligt mot förändringar i energipris och investeringskostnader för elektrolysören för vätgasproduktion. Vi fann också att källan till koldioxidavskiljning påverkar priset, där direktluftsavskiljning (DAC) ökade de totala kostnaderna med 32% respektive 25% jämfört med bioetanol och pappersmassa. Produktionskostnaderna för elektrobränslen indikerarar en utsläppsminskningskostnad mellan 457-1,042 €/ton CO2e, beroende på energiscenario och utsläppsminskningspotential. Slutsatsen är att produktionen av elektrobränslen för flygindustrin är beroende av låga energipriser, källa för koldioxidavskiljning och stordriftsfördelar för vätgasproduktion. Detta påvisar att förnybar energi i kombination med teknologisk utveckling inom vätgas- och koldioxidproduktion är avgörande för att etablera en välfungerande värdekedja. Detta kan bli utmanande då andra industrier, som produktionen av grönt stål, kommer att kräva liknande insatsvaror för produktion och betonar därmed vikten av den geografiska placeringen av elektrobränslefabriker för att ha möjligheten att producera hållbara och kostnadseffektiva bränslen.
12

Single Cavity Trapped Vortex Combustor Dynamics : Experiments & Simulations

Singhal, Atul 07 1900 (has links)
Trapped Vortex Combustor (TVC) is a relatively new concept for potential use in gas turbine engines addressing ever increasing demands of high efficiency, low emissions, low pressure drop, and improved pattern factor. This concept holds promise for future because of its inherent advantages over conventional swirl-stabilized combustors. The main difference between TVC and a conventional gas turbine combustor is in the way combustion is stabilized. In conventional combustors, flame is stabilized because of formation of toroidal flow pattern in the primary zone due to interaction between incoming swirling air and fuel flow. On the other hand, in TVC, there is a physical cavity in the wall of combustor with continuous injection of air and fuel leading to stable and sustained combustion. Past work related to TVC has focussed on use of two cavities in the combustor liner. In the present study, a single cavity combustor concept is evaluated through simulation and experiments for applications requiring compact combustors such as Unmanned Aerial Vehicles (UAVs) and cruise missiles. In the present work, numerical simulations were initially performed on a planar, rectangular single-cavity geometry to assess sensitivity of various parameters and to design a single-cavity TVC test rig. A water-cooled, modular, atmospheric pressure TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D) of the cavity and optical access through quartz plates provided on three sides for visualization. Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel, and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single-cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 98-99% and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no major vortex shedding downstream. This enabled steady-state simulations to be performed for the selected cases. Insight from simulations has highlighted the importance of air and fuel injection strategies in the cavity. From a mixing and combustion efficiency standpoint, it is desirable to have a cavity vortex that is anti-clockwise. However, the natural tendency for flow over a cavity is to form a vortex that is clockwise. The tendency to blow-out at higher inlet flow velocities is thought to be because of these two opposing effects. This interaction helps improve mixing, however leads to poor flame stability unless cavity-air velocity is strong enough to support a strong anti-clockwise vortex in the cavity. This basic understating of cavity flow dynamics can be used for further design improvements in future to improve flame stability at higher inlet flow velocities and eventually lead to the development of a practical combustor.
13

Numerical Simulations Of Two-Phase Reacting Flow In A Cavity Combustor

Sivaprakasam, M 12 1900 (has links) (PDF)
In the present work, two phase reacting flow in a single cavity Trapped Vortex Combustor (TVC) is studied at atmospheric conditions. KIVA-3V, numerical program for simulating three dimensional compressible reacting flows with sprays using Lagrangian-Drop Eulerian-fluid procedure is used. The stochastic discrete droplet model is used for simulating the liquid spray. In each computational cell, it is assumed that the volume occupied by the liquid phase is very small. But this assumption of very low liquid volume fraction in a computational cell is violated in the region close to the injection nozzle. This introduces grid dependence in predictions of liquid phase in the region close to the nozzle in droplet collision algorithm, and in momentum coupling between the liquid and the gas phase. Improvements are identified to reduce grid dependence of these algorithms and corresponding changes are made in the standard KIVA-3V models. Pressure swirl injector which produces hollow cone spray is used in the current study along with kerosene as the liquid fuel. Modifications needed for modelling pressure swirl atomiser are implemented. The Taylor Analogy Breakup (TAB) model, the standard model for predicting secondary breakup is improved with modifications required for low pressure injectors. The pressure swirl injector model along with the improvements is validated using experimental data for kerosene spray from the literature. Simulations of two phase reacting flow in a single cavity TVC are performed and the temperature distribution within the combustor is studied. In order to identify an optimum configuration with liquid fuel combustion, the following parameters related to fuel and air such as cavity fuel injection location, cavity air injection location, Sauter Mean Diameter (SMD) of injected fuel droplets, velocity of the fuel injected are studied in detail in order to understand the effect of these parameters on combustion characteristics of a single cavity TVC.
14

Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité / Numerical simulation of turbulent combustion : Immersed Boundary Method for compressible flow, application to combustion behind a cavity

Merlin, Cindy 08 December 2011 (has links)
Une méthode de frontières immergées est développée pour la simulation d’écoulements compressibles et validée au travers de cas-tests spécifiques (réflexion d’ondes acoustiques et quantification de la conservation de la masse dans des canaux inclinés). La simulation aux grandes échelles (LES) d’une cavité transsonique est ensuite présentée. Le bouclage aéro-acoustique, très sensible aux conditions aux limites, est reproduit avec précision par la LES dans le cas où les parois sont immergées dans un maillage structurée. La comparaison des stratégies de modélisation de sous-maille pour cet écoulement transsonique et l’adaptation des filtres en présence de frontières immergées sont également discutées. Le rôle, souvent sous-estimé, du schéma de viscosité artificiel, est quantifié.Dans la dernière partie du manuscrit, des études sont réalisées pour aider au dimensionnement d’un nouveau concept de chambre de combustion où la flamme est stabilisée par la recirculation de gaz brûlés dans une cavité (chambre TVC pour Trapped Vortex Combustor). La modélisation de la combustion turbulente est basée sur une chimie tabulée, couplée à une fonction densité de probabilité présumée (PCM-FPI). L’étude de la dynamique de la flamme est réalisée pour diverses conditions de fonctionnement (débit de l’écoulement principal et présence ou non d’un swirl). Les spécificités de mise en œuvre de la simulation d’un écoulement de ce type sont discutées et un soin particulier est apporté au traitement de la condition de sortie, qui constitue un point sensible de la chaîne de modélisation. Les phénomènes d’instabilités et de retour de la flamme sont mis en évidence ainsi que les modifications à apporter au dispositif afin de minimiser ces effets. L’existence d’un cycle limite acoustique est souligné et une formule permettant d’anticiper le niveau des fluctuations de pression est proposée et validée. Une correction au modèle PCM-FPI est présentée afin de préserver la vitesse de flamme et d’assurer une reproduction plus précise de la dynamique de flamme. / An immersed boundary method has been developed for the simulation of compressible flow and validated with reference test cases (pressure wave reflection and quantification of mass conservation for various inclined channels). Large Eddy Simulation (LES) of a transonic cavity is then presented. The aeroacoustic feedback loop, which is highly sensitive to the boundary conditions, was accurately reproduced where the walls are immersed inside a structured grid. The comparison between the modeling approaches for this transonic flow and the correction of the filtering operation near immersed boundaries are also discussed. The often underestimated role of the numerical artificial dissipation is also quantified.In the last part of this manuscript, many studies are realized to help in the design of a new combustion chamber for Trapped Vortex Combustor (TVC). The turbulent combustion model is based on tabulated chemistry and a presumed probability density function (PCM-FPI) method.The flame dynamics is studied for various operating conditions (flowrate of the main flow and presence of swirl motion). Details concerning the realization of such a flow are discussed and special care is taken for the treatment of the most sensitive outlet boundary condition. The phenomena of combustion instabilities and of flame backflow are highlighted along with the modifications to be made for the device to minimize these effects. The existence of a acoustic limit cycle is emphasized and a formula is proposed and validated to anticipate the level of pressure fluctuations. Finally a correction to the PCM-FPI model is suggested to preserve the flame front speed and to ensure a more accurate description of the flame dynamics.
15

Laser-based Diagnostics and Numerical Simulations of Syngas Combustion in a Trapped Vortex Combustor

Krishna, S January 2015 (has links) (PDF)
Syngas consisting mainly of a mixture of carbon monoxide, hydrogen and other diluents, is an important fuel for power generation applications since it can be obtained from both biomass and coal gasification. Clean coal technologies require stable and efficient operation of syngas-fired gas turbines. The trapped vortex combustor (TVC) is a relatively new gas turbine combustor concept which shows tremendous potential in achieving stable combustion under wide operating conditions with low emissions. In the present work, combustion of low calorific value syngas in a TVC has been studied using in-situ laser diagnostic techniques and numerical modeling. Specifically, this work reports in-situ measurements of mixture fraction, OH radical concentration and velocity in a single cavity TVC, using state-of-the art laser diagnostic techniques such as Planar Laser-induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV). Numerical simulations using the unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches have also been carried out to complement the experimental measurements. The fuel-air momentum flux ratio (MFR), where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. Acetone PLIF experiments show that at high MFRs, the fuel-air mixing in the cavity is very minimal and is enhanced as the MFR reduces, due to a favourable vortex formation in the cavity, which is corroborated by PIV measurements. Reacting flow PIV measurements which differ substantially from the non-reacting cases primarily because of the gas expansion due to heat release show that the vortex is displaced from the centre of the cavity towards the guide vane. The MFR was hence identified as the controlling parameter for mixing in the cavity. Quantitative OH concentration contours showed that at higher MFRs 4.5, the fuel jet and the air jet stream are separated and a flame front is formed at the interface. As the MFR is lowered to 0.3, the fuel air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. A flame stabilization mechanism has been proposed which accounts for the wide MFRs and premixing in the mainstream as well. LES simulations using a flamelet-based combustion model were conducted to predict mean OH radical concentration and velocity along with URANS simulations using a modified Eddy dissipation concept model. The LES predictions were observed to agree closely with experimental data, and were clearly superior to the URANS predictions as expected. Performance characteristics in the form of exhaust temperature pattern factor and pollutant emissions were also measured. The NOx emissions were found to be less than 2 ppm, CO emissions below 0.2% and HC emissions below 700 ppm across various conditions. Overall, the in-situ experimental data coupled with insight from simulations and the exhaust measurements have confirmed the advantages of using the TVC as a gas turbine combustor and provided guidelines for stable and efficient operation of the combustor with syngas fuel.

Page generated in 0.0264 seconds