• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Strain Rate Behaviour of Hot Formed Boron Steel with Tailored Properties

Bardelcik, Alexander January 2012 (has links)
In an automotive crash event, hot stamped, die quenched martensitic structural components have been shown to provide excellent intrusion resistance. These alloys exhibit only limited ductility, however, which may limit the overall impact performance of the component. The introduction of lower strength and more ductile “tailored” properties within some regions of a hot stamped component has the potential to improve impact performance. One approach being applied to achieving such tailored properties is through locally controlling the cooling rate within the stamping die. The primary motivation for the current work is to understand the role of cooling rate on the as-quenched mechanical response of tailored hot stampings, which has required characterization of the high strain rate mechanical behaviour of tailored hot stamped boron steel. The effect of cooling rate and resulting microstructure on the as-quenched mechanical behavior of USIBOR® 1500P boron steel at strain rates between 10-3 and 103 s-1 was investigated. Specimens quenched at rates above the critical cooling rate (~27 °C/s) exhibited a fully martensitic microstructure with a UTS of ~1,450 MPa. Sub-critical cooling rates, in the range 14°C/s to 50 °C/s, resulted in as-quenched microstructures ranging between bainitic to martensitic, respectively. Tension tests revealed that predominantly bainitic material conditions (14 °C/s cooling rate) exhibited a lower UTS of 816 MPa compared to 1,447 MPa for the fully martensitic material condition (50 °C/s cooling rate) with a corresponding increase in elongation from 0.10 to 0.15 for the bainitic condition. The reduction in area was 70% for the bainitic material condition and 58% for the martensitic material conditions which implied that a tailored region consisting of bainite may be a desirable candidate for implementation within a hot stamped component. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the measured flow stress curves were used to develop a strain rate sensitive constitutive model, the “Tailored Crash Model (TCM)”. The TCM accurately reproduced the measured flow stress curves as a function of effective plastic strain, strain rate and Vickers hardness (or area fraction of martensite and bainite). The effect of deformation during quenching and the associated shift in the CCT diagram on the subsequent constitutive response was also examined for this material. Specimens were simultaneously quenched and deformed at various cooling rates to achieve a range of as-quenched microstructures that included ferrite in addition to martensite and bainite. Tensile tests conducted on these specimens at strain rates ranging from 0.003 s-1 to ~80 s-1 revealed that the presence of ferrite resulted in an increase in uniform elongation and n-value which increased overall energy absorption for a given hardness level. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the TCM constitutive model was extended to account for the presence of ferrite. This extended constitutive model, the “Tailored Crash Model II (TCM II)”, has been shown to predict flow stress as a function of effective plastic strain, strain rate and area fraction of martensite, bainite and ferrite. As a validation exercise, uniaxial tension test simulations of specimens extracted from the transition zone of a hot stamped lab-scale B-pillar with tailored properties [1] were performed. The measured hardness distribution along the gauge length of the tensile specimens was used as input for the TCM constitutive model to define the element constitutive response used in the finite element (FE) models. The measured stress versus strain response and strain distribution during loading (measured using digital image correlation) was in excellent agreement with the FE models and thus validated the TCM constitutive model developed in this work. Validation of the TCM II version of the model is left for future work.
2

Hot Forming of Boron Steels with Tailored Mechanical Properties: Experiments and Numerical Simulations

George, Ryan January 2011 (has links)
Hot forming of boron steels is becoming increasingly popular in the automotive industry due to the demands for weight reduction and increased safety requirements for new vehicles. Hot formed components offer a significant increase in strength over conventional cold-formed steels, which has allowed for reductions in material thickness (and thus weight) while maintaining the same strength. Hot formed components are typically used in structural applications to improve the integrity of the vehicle’s cabin in the event of a collision. It has been suggested, however, that the crash performance of certain hot formed parts may be increased by locally tailoring their mechanical properties to improve their energy absorption. The final microstructure of a hot formed part is driven by the rate at which it is cooled within the tooling during the forming and quenching process. By controlling the cooling rate of the part, it is possible to control the final microstructure, and thus the final mechanical properties. This thesis outlines the experimental and numerical studies that were performed for the hot forming of a lab-scale B-pillar. A hot forming die set was developed which has both heating and cooling capabilities to control the local cooling rate of the blank as it is formed and quenched. The first aspect of this research is to produce a hot formed part which is representative of an industrial component, and then to numerically model the process to predict the final mechanical properties. The second aspect is to produce a hot formed part with tailored mechanical properties, such that there are regions of the part with very high strength (very hard) and other regions with increased ductility (softer). By tailoring the microstructure to meet the performance requirement of a hot formed part, it may be possible to optimize its crash behavior and also reduce the overall weight. Cartridge heaters were installed into sections of the tooling allowing it to reach a maximum temperature of 400°C. Cooling channels are used in other sections to maintain it at approximately room temperature. Experiments were performed on 1.2 mm Usibor® 1500P steel at heated die temperatures ranging from 25°C to 400°C. In the fully cooled region, the Vickers hardness of the blank was measured to be 450 – 475 HV, on average. As the temperature of the heated region was increased, a significant softening trend was observed in the areas of the blank that were in contact with the heated tool. The greatest levels of softening occurred in the 400°C heated die trial. Hardness measurements as low as 234 HV were recorded, which represents a reduction in hardness of 49% compared to the fully cooled trials. Numerical models of the experiments were developed using LS-DYNA and use of its advanced hot forming material model which allows for microstructure and hardness prediction within the final part. The numerical models have shown promising results in terms of predicting the hardness trends as the temperature of the die increases. Thermal expansion of the tooling resulted in local changes in the geometry of the tooling which proved to be problematic during the forming and quenching stages of the process. The expansion caused unexpected changes in the part-die contact, and the resulting microstructures were altered. These thermal expansion issues were addressed in the current work by shimming the tooling; however, in future work the tooling should be designed to account for this expansion at the desired operating temperature.
3

Hot Forming of Boron Steels with Tailored Mechanical Properties: Experiments and Numerical Simulations

George, Ryan January 2011 (has links)
Hot forming of boron steels is becoming increasingly popular in the automotive industry due to the demands for weight reduction and increased safety requirements for new vehicles. Hot formed components offer a significant increase in strength over conventional cold-formed steels, which has allowed for reductions in material thickness (and thus weight) while maintaining the same strength. Hot formed components are typically used in structural applications to improve the integrity of the vehicle’s cabin in the event of a collision. It has been suggested, however, that the crash performance of certain hot formed parts may be increased by locally tailoring their mechanical properties to improve their energy absorption. The final microstructure of a hot formed part is driven by the rate at which it is cooled within the tooling during the forming and quenching process. By controlling the cooling rate of the part, it is possible to control the final microstructure, and thus the final mechanical properties. This thesis outlines the experimental and numerical studies that were performed for the hot forming of a lab-scale B-pillar. A hot forming die set was developed which has both heating and cooling capabilities to control the local cooling rate of the blank as it is formed and quenched. The first aspect of this research is to produce a hot formed part which is representative of an industrial component, and then to numerically model the process to predict the final mechanical properties. The second aspect is to produce a hot formed part with tailored mechanical properties, such that there are regions of the part with very high strength (very hard) and other regions with increased ductility (softer). By tailoring the microstructure to meet the performance requirement of a hot formed part, it may be possible to optimize its crash behavior and also reduce the overall weight. Cartridge heaters were installed into sections of the tooling allowing it to reach a maximum temperature of 400°C. Cooling channels are used in other sections to maintain it at approximately room temperature. Experiments were performed on 1.2 mm Usibor® 1500P steel at heated die temperatures ranging from 25°C to 400°C. In the fully cooled region, the Vickers hardness of the blank was measured to be 450 – 475 HV, on average. As the temperature of the heated region was increased, a significant softening trend was observed in the areas of the blank that were in contact with the heated tool. The greatest levels of softening occurred in the 400°C heated die trial. Hardness measurements as low as 234 HV were recorded, which represents a reduction in hardness of 49% compared to the fully cooled trials. Numerical models of the experiments were developed using LS-DYNA and use of its advanced hot forming material model which allows for microstructure and hardness prediction within the final part. The numerical models have shown promising results in terms of predicting the hardness trends as the temperature of the die increases. Thermal expansion of the tooling resulted in local changes in the geometry of the tooling which proved to be problematic during the forming and quenching stages of the process. The expansion caused unexpected changes in the part-die contact, and the resulting microstructures were altered. These thermal expansion issues were addressed in the current work by shimming the tooling; however, in future work the tooling should be designed to account for this expansion at the desired operating temperature.
4

High Strain Rate Behaviour of Hot Formed Boron Steel with Tailored Properties

Bardelcik, Alexander January 2012 (has links)
In an automotive crash event, hot stamped, die quenched martensitic structural components have been shown to provide excellent intrusion resistance. These alloys exhibit only limited ductility, however, which may limit the overall impact performance of the component. The introduction of lower strength and more ductile “tailored” properties within some regions of a hot stamped component has the potential to improve impact performance. One approach being applied to achieving such tailored properties is through locally controlling the cooling rate within the stamping die. The primary motivation for the current work is to understand the role of cooling rate on the as-quenched mechanical response of tailored hot stampings, which has required characterization of the high strain rate mechanical behaviour of tailored hot stamped boron steel. The effect of cooling rate and resulting microstructure on the as-quenched mechanical behavior of USIBOR® 1500P boron steel at strain rates between 10-3 and 103 s-1 was investigated. Specimens quenched at rates above the critical cooling rate (~27 °C/s) exhibited a fully martensitic microstructure with a UTS of ~1,450 MPa. Sub-critical cooling rates, in the range 14°C/s to 50 °C/s, resulted in as-quenched microstructures ranging between bainitic to martensitic, respectively. Tension tests revealed that predominantly bainitic material conditions (14 °C/s cooling rate) exhibited a lower UTS of 816 MPa compared to 1,447 MPa for the fully martensitic material condition (50 °C/s cooling rate) with a corresponding increase in elongation from 0.10 to 0.15 for the bainitic condition. The reduction in area was 70% for the bainitic material condition and 58% for the martensitic material conditions which implied that a tailored region consisting of bainite may be a desirable candidate for implementation within a hot stamped component. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the measured flow stress curves were used to develop a strain rate sensitive constitutive model, the “Tailored Crash Model (TCM)”. The TCM accurately reproduced the measured flow stress curves as a function of effective plastic strain, strain rate and Vickers hardness (or area fraction of martensite and bainite). The effect of deformation during quenching and the associated shift in the CCT diagram on the subsequent constitutive response was also examined for this material. Specimens were simultaneously quenched and deformed at various cooling rates to achieve a range of as-quenched microstructures that included ferrite in addition to martensite and bainite. Tensile tests conducted on these specimens at strain rates ranging from 0.003 s-1 to ~80 s-1 revealed that the presence of ferrite resulted in an increase in uniform elongation and n-value which increased overall energy absorption for a given hardness level. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the TCM constitutive model was extended to account for the presence of ferrite. This extended constitutive model, the “Tailored Crash Model II (TCM II)”, has been shown to predict flow stress as a function of effective plastic strain, strain rate and area fraction of martensite, bainite and ferrite. As a validation exercise, uniaxial tension test simulations of specimens extracted from the transition zone of a hot stamped lab-scale B-pillar with tailored properties [1] were performed. The measured hardness distribution along the gauge length of the tensile specimens was used as input for the TCM constitutive model to define the element constitutive response used in the finite element (FE) models. The measured stress versus strain response and strain distribution during loading (measured using digital image correlation) was in excellent agreement with the FE models and thus validated the TCM constitutive model developed in this work. Validation of the TCM II version of the model is left for future work.

Page generated in 0.0472 seconds