• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 35
  • 7
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 71
  • 55
  • 37
  • 36
  • 25
  • 24
  • 21
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Behavioral and physiologic consequences of inducible inactivation of the \(Tryptophan\) \(hydroxylase\) 2 gene in interaction with early-life adversity / Verhaltens- und physiologische Konsequenzen einer induzierbaren Inaktivierung des \(Tryptophan\) \(hydroxylase\) 2-Gens Interaktion mit frühkindlichen Stresses

Aboagye, Benjamin January 2019 (has links) (PDF)
Disruptions in brain serotonin (5-hydroxytryptamine, 5-HT) signaling pathways have been associated with etiology and pathogenesis of various neuropsychiatric disorders, but specific neural mechanisms of 5-HT function are yet to be fully elucidated. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme for brain 5-HT synthesis. Therefore, in this study a tamoxifen (Tam)-inducible cre-mediated conditional gene (Tph2) knockout in adult mouse brain (Tph2icKO) has been established to decipher the specific role of brain 5-HT in the regulation of behavior in adulthood. Immunohistochemistry and high-performance liquid chromatography (HPLC) were used first to test the efficacy of Tam-inducible inactivation of Tph2 and consequential reduction of 5-HT in adult mouse brain. Tam treatment resulted in ≥90% reduction in the number of 5-HT immuno-reactive cells in the anterior raphe nuclei. HPLC revealed a significant reduction in concentration of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in selected brain regions of Tph2icKO, indicating the effectiveness of the protocol used. Second, standard behavioral tests were used to assess whether reduced brain 5-HT concentrations could alter anxiety-, fear- and depressive-like behavior in mice. No altered anxiety- and depressive-like behaviors were observed in Tph2icKO compared to control mice (Tph2CON) in all indices measured, but Tph2icKO mice exhibited intense and sustained freezing during context-dependent fear memory retrieval. Tph2icKO mice also exhibited locomotor hyperactivity in the aversive environments, such as the open field, and consumed more food and fluid than Tph2CON mice. Lastly, the combined effect of maternal separation (MS) stress and adult brain 5-HT depletion on behavior was assessed in male and female mice. Here, MS stress, 5-HT depletion and their interaction elicited anxiety-like behavior in a sex-dependent manner. MS reduced exploratory behavior in both male and female mice. Reduced 5-HT enhanced anxiety in female, but not in male mice. Furthermore, expression of genes related to the 5-HT system and emotionality (Tph2, Htr1a, Htr2a, Maoa and Avpr1a) was assessed by performing a quantitative real-time PCR. In Tph2icKO mice there was a reduction in expression of Tph2 in the raphe nuclei of both male and female mice. Interaction between MS stress and 5-HT deficiency was detected showing increased Htr2a and Maoa expression in raphe and hippocampus respectively of female mice. In male mice, MS stress and 5-HT depletion interaction effects reduced Avpr1a expression in raphe, while the expression of Htr1a, Htr2a and Maoa was differentially altered by 5-HT depletion and MS in various brain regions. / Unterbrechungen der Serotonin-Stoffwechselwege (5-Hydroxytryptamin, 5-HT) im Gehirn wurden mit der Ätiologie und der Pathogenese von verschiedenen neuropsychiatrischen Erkrankungen assoziiert, wobei die neuronalen Mechanismen der 5-HT Funktionen noch vollständig entschlüsselt werden müssen. Die Tryptophan-Hydroxylase 2 (TPH2) ist das limitierende Enzym für die 5-HT Synthese im Gehirn, weshalb der durch Tamoxifen (Tam) induzierbare, cre-vermittelte Tph2 Gen-Knockout (Tph2icKO) im adulten Mausgehirn möglicherweise helfen könnte die spezifische Rolle von 5-HT im Gehirn in der Regulation von adultem Verhalten zu entschlüsseln. Zuerst wurden Hochleistungsflüssigkeitschromatographie (HPLC) und Immunhistochemische Analysen durchgeführt um die Effizienz der Tam induzierten Inaktivierung des Tph2 und die daraus folgende Reduktion von 5-HT im Gehirn zu überprüfen. Die Behandlung mit Tam resultierte in einer ≥86% Reduktion der Anzahl von 5-HT immunoreaktiven Zellen in der anterioren Raphe im Gehirn. Die HPLC zeigte eine signifikante Reduktion der 5-HT Konzentration und dessen Stoffwechselprodukts 5-Hydroxyindolylessigsäure (5-HIAA) in ausgewählten Gehirn regionen von Tph2icKO, was auf die Effektivität des benutzten Protokolls hindeutet. Danach wurden standarisierte Verhaltens tests durchgeführt um festzustellen, ob eine reduzierte 5-HT Konzentrationen im Gehirn zu einer Veränderung in der Angstreaktion, Depression und im Furchtverhalten der Mäuse führt. Bei allen Tests konnte sowohl in den Tph2icKO-Mäusen als auch in den Kontrolltieren kein offensichtliches angstbezogenes und depressionsähnliches Verhalten festgestellt werden, wobei die Tph2icKO-Mäuse intensive und anhaltende Furcht im Kontext „dependent fear retrieval“ zeigten. Tph2icKO-Mäuse zeigten zudem lokomotorische Hyperaktivität und konsumierten mehr Futter und Flüssigkeit als die Kontrolltiere. Zuletzt wurde der kombinierte Effekt von Stress durch mütterliche Trennung (MS) und adulter 5-HT Reduktion im Gehirn auf das Verhalten von männlichen und weiblichen Mäusen untersucht. Wieder rief nicht der depressionsähnliche Phänotyp, sondernder Stress durch die mütterliche Trennung (MS) und 5-HT Verarmung und deren Interaktion ein angstähnliches Verhalten in Abhängigkeit vom Geschlecht hervor. Reduziertes 5-HT vergrößerte die Angst in weiblichen, aber nicht in männlichen Mäusen. Stress durch mütterliche Trennung (MS) reduzierte das explorative Verhalten sowohl in Männchen als auch in Weibchen. Die Expression von Genen, welche im Bezug zum 5-HT System stehen (Tph2, Htr1a, Htr2a, Maoa und Avpr1a) wurden mit Hilfe von quantitativer Real-Time PCR untersucht. Die Tam Behandlung reduzierte dasTph2 Level in der Raphe bei beiden Geschlechtern signifikant. In weiblichen Mäusen steigertedie Interaktion zwischen Stress durch mütterliche Trennung (MS) und 5-HT Verarmung das Htr2a und Maoa Expressions level in der Raphe und im Hippokampus. In männlichen Mäusen reduzierte die Interaktion von Stress durch mütterliche Trennung (MS) und 5-HT Reduktion die Avpr1a Expression in der Raphe. Die Expression von Htr1a, Htr2a und Maoa wurde in verschiedenen Gehirn regionen unterschiedlich von Tam und Mütterliche Trennung MS verändert. In der Amygdala wurde nur ein MS Effekt auf die Tph2 Expression in den Mäusen sichtbar.
32

Studies of tamoxifen resistance in breast cancer

Palmebäck Wegman, Pia January 2007 (has links)
Oestrogen is one of the most important hormonal regulators and is known to play a key role in the development and growth of breast cancer. The majority of tumours have a hormone dependent growth, and this is indicated by the presence of oestrogen receptors (ERs). About two thirds of breast cancers occur after the menopause when the ovaries have ceased to produce oestrogen and despite the low levels of circulating oestrogen’s the tumour concentrations of oestrone, oestradiol and their sulfates have been shown to be significant. Patients with hormone dependent tumours are candidates for treatment with the anti-oestrogen tamoxifen, which acts by competing with oestrogen for binding to the ER thereby, diminish the transcription of oestrogen regulated genes. The drug is mainly metabolised by cytochrome P450 enzymes in the liver and to a lesser extent locally in the breast, where upon several produced metabolites have higher affinity for the ER than the mother substance. Patients treated with tamoxifen have in general a prolonged disease-free survival. Even if most patients respond well to tamoxifen about 30-50 % either fail to respond or become resistant by incompletely understood mechanisms. Therefore, the aim of this thesis was to investigate possible mechanisms responsible for tamoxifen resistance. In paper I and II we studied genetic variants of enzymes participating in the metabolism of tamoxifen and assessed whether these variants correlated to breast cancer prognosis and/or to the benefit of tamoxifen. The results indicate an influence of CYP2D6, CYP3A5, and SULT1A1 genotypes in tamoxifen response. Further, tamoxifen has shown to compete with oestrogen for the binding to ER. In paper III we measured the expression levels of enzymes involved in the local synthesis of oestrogens in order to see if they correlated to clinical outcome. The protein expression of stromal aromatase was shown to have a prognostic significance, especially in ER-positive patients. Finally, tamoxifen and its ER-active metabolites have shown to induce both cell cycle arrest and apoptosis and one central mediator in these processes is the tumour suppressor protein p53. The proapoptotic activity of p53 is dependent on a proline rich domain containing a common Pro-to-Arg polymorphism. In paper IV we examined the value of this genetic variant as a predictive marker for anti-cancer therapy and found that patients carrying the Pro-allele might be good responders of tamoxifen therapy. The present thesis further indicates the complexity of the mechanisms underlying tamoxifen resistance. In summary, genetic variants of metabolic enzymes, genetic variants in p53, as well as expression levels of enzymes involved in local oestrogen synthesis, may have influence on breast cancer prognosis and may be useful markers in the prediction of tamoxifen response.
33

The Molecular Pharmacology of Endogenous and Therapeutic Estrogen Receptor Modulators in the Breast and Skeleton

DuSell, Carolyn D. January 2009 (has links)
<p>Estrogens and the estrogen receptor (ER) have been implicated in the etiology of breast cancer and osteoporosis. However, the mechanisms by which this receptor-ligand complex manifest their regulatory activities in these processes is not completely understood. The development and subsequent definition of the molecular mechanism of action of selective ER modulators (SERMs), compounds with differential relative agonist/antagonist activity, has uncovered an unanticipated complexity in this signaling pathway. Furthermore, these analyses indicat that it is likely that in addition to the classical steroidal estrogens, which exhibit agonist properties, endogenous compounds exist that interact with ER and function as physiological SERMs. Recently, 27-hydroxycholesterol (27HC) was identified as an endogenous ER ligand with tissue-specific estrogenic/anti-estrogenic activities. Indeed, we determined that 27HC exhibited the three basic properties of a SERM: 1) it bound competitively with estradiol (E2) to both genetic subtypes of ER, ER&#945; and ER&#946;; 2) it induced a unique conformation of ER that is likely related to its biological activity; and 3) it displayed tissue-specific ER modulatory activity in the cardiovascular system, breast, and bone. In particular, we undertook a series of in vivo studies to show that a pathological elevation of 27HC was associated with decreased bone quantity, an effect that was partially rescued by E2 supplementation. The ability of 27HC to decrease bone density in the absence of endogenous estrogens suggests that the circulating level of 27HC may be of critical importance in determining osteoporosis risk in post-menopausal women. Interestingly, cholesterol-lowering statins have been shown to improve bone density; thus, given the stoichiometric relationship between circulating cholesterol and 27HC, our data provide a possible explanation for the observed bone sparing actions of this class of drugs. </p><p>In general, it is considered that SERM activity can be explained by the ability to induce differential alterations in ER structure and the impact that this has on the recruitment of functionally distinct cofactors. The results of our studies reveal a much more complex picture and suggest that some SERM pharmacology can be ascribed to actions in pathways that do not include ER. Specifically, we have determined that the SERM 4-hydroxy-tamoxifen (4OHT) can bind to and activate the aryl hydrocarbon receptor (AHR). Given that AHR controls the expression of E2-metabolizing enzymes, our finding that 4OHT regulates AHR in the context of breast cancer could have important pharmacological and pathological implications. Interestingly, our preliminary in vitro data indicate that the ability of 4OHT to inhibit osteoclast (OC) differentiation, and thus aid in preserving bone density in post-menopausal women, is primarily dependent on expression of AHR, not ER. Conversely, the inhibitory activity of raloxifene (RAL), another SERM, on OC differentiation was absolutely dependent on ER. Thus, the activity of 4OHT in bone is likely to be a composite response requiring its actions on both ER and AHR. </p><p>Many new aspects of the estrogen and ER signaling pathways have been uncovered as we learn more about ligands that modulate ER by altering its conformation and thus its ability to engage in protein-protein interactions. Collectively, our findings demonstrate that the intersection between cholesterol metabolism, ER signaling, and the AHR pathway will have important consequences in regulating cellular function, and may be involved in the development or progression of multiple disease states.</p> / Dissertation
34

Synthesis and Pharmacological Evaluation of Nitrogen Oxide Releasing Prodrugs

Bharadwaj, Gaurav January 2013 (has links)
The main goals of this research were to synthesize nitrogen oxide releasing diazeniumdiolates and their prodrugs and to evaluate their pharmacological effects. The different projects and their results are described below. i. Comparison of HNO and NO donating properties of cyclic amine diazeniumdiolates Diazeniumdiolates are an attractive class of donor compounds as they can be tuned to release NO or both NO and HNO depending upon the amine backbone. Isopropylamine (IPA/NO) and cyclohexylamine (CHA/NO) diazeniumdiolates are currently the only examples of primary amine based diazeniumdiolates. A series of structurally related cyclic amine based diazeniumdiolates were synthesized and characterized. An acetoxymethyl derivative was also synthesized to facilitate cellular uptake and to achieve higher HNO levels in cells. ii. Nitrogen oxide releasing diazeiumdiolate based adducts of N-des-methyl-tamoxifen Nitrogen oxide (NO/HNO) donating diazeniumdiolate adducts of N-desmethyltamoxifen (a key metabolite of the breast cancer drug tamoxifen) were synthesized. DEA/NO-AcOM, an NO donor was also synthesized to monitor the effect of NO on breast cancer cell survival. Derivatives of N-desmethyltamoxifen were found to be effective towards estrogen receptor positive (ER+) cells only. DEA/NO-AcOM was found to be cytotoxic towards estrogen-dependent and independent cell lines, in combination with tamoxifen, or by itself. iii. Synthesis and characterization of nitrogen oxide adducts with non-steroidal anti-inflammatory drugs (NSAIDs) Our group has shown HNO releasing diazeniumdiolate derivatized aspirin to be comparably effective in preventing gastric ulceration to NO-releasing diazeniumdiolate based aspirin analogues. Series of such NSAID adducts were further extended by synthesizing such derivatives of indomethacin and niflumic acid. NO/HNO releasing analogues of aspirin and indomethacin were cytotoxic towards two different breast cancer cell lines, irrespective of estrogen dependence.iv. Chlorambucil analogue of PABA/NOChlorambucil, an alkylating agent is used in leukemia treatment. Tumor cells resistant to alkylating agents often have increased glutathione levels and increased activity of glutathione-S-transferase (GST). PABA/NO is an NO donor with a promising anticancer profile. The chlorambucil analogue of PABA/NO was synthesized to utilize GST for releasing NO and to potentially overcome cellular resistance.
35

Studies of tamoxifen resistance in breast cancer /

Palmebäck Wegman, Pia, January 2007 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2007. / Härtill 4 uppsatser.
36

Effects of sex steroids and tamoxifen on VEGF in the breast /

Garvin, Stina, January 2006 (has links)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2006. / Härtill 4 uppsatser.
37

Influencia do estrogeno e do anti-estrogeno tamoxifeno sobre a dinamica testicular de ratos / Influence of estrogen and anti-estrogen tamoxifen on the testicular dynamics of rats

Pinto-Fochi, Maria Etelvina 15 August 2005 (has links)
Orientador: Rejane Maira Goes / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-05T20:48:06Z (GMT). No. of bitstreams: 1 Pinto_MariaEtelvina_M.pdf: 13780138 bytes, checksum: 687200b70b6f4ab0abe1ba1bd2d7243a (MD5) Previous issue date: 2005 / Resumo: Embora seja bem conhecido que o estrógeno é essencial para o adequado desenvolvimento embrionário e maturação pós-natal do testículo, seu papel específico para a fisiologia testicular e em especial para a espermatogênese ainda permanece pouco compreendido. O objetivo do presente estudo foi determinar o impacto da administração subcutânea de uma dose única (35 mg/kg de peso corporal) de benzoato de estradiol e do anti-estrógeno Tamoxifeno sobre o testículo de ratos jovens (5 semanas de idade). Os efeitos do desequilíbrio hormonal passageiro foram avaliados uma (curto prazo) e sete semanas (médio prazo) após os referidos tratamentos com o uso de análises de rotina em microscopia de luz e microscopia eletrônica de transmissão, associadas a análises morfométricas e estereológicas e também pelo método de TUNEL para a detecção de células apoptóticas. O estrógeno afetou mais drasticamente a estrutura testicular e a espermatogênese quando comparado com o Tamoxifeno. Em curto prazo, a exposição à alta dose de estrógeno reduziu em 50% o peso testicular, diminuiu o diâmetro dos túbulos seminíferos e a população de células de Sertoli, induziu um aumento na apoptose das espermátides alongadas acarretando seu desaparecimento. Embora o índice gônadosomático tenha se recuperado sete semanas após a injeção de estrógeno, a taxa de apoptose das células germinativas ainda permanece 5 vezes mais alta e o número de espermátides alongadas é muito inferior ao encontrado nos animais controle. Em curto prazo, a exposição ao Tamoxifeno foi menos prejudicial para o testículo de ratos jovens em comparação com o estrógeno, mas, em médio prazo, resultou em alguns efeitos semelhantes tais como redução do diâmetro dos túbulos seminíferos, incidência elevada de células germinativas apoptóticas, e atrofia de células de Leydig. A partir dos resultados obtidos concluímos, que tanto a exposição passageira ao estrógeno como ao Tamoxifeno interfere negativamente na dinâmica testicular de ratos jovens, levando a danos na espermatogênese que persistem nos animais adultos com uma provável redução da fertilidade / Abstract: Although it is a consensus that estrogen is essential for normal embryonic development and postnatal maturation of the testis, its specific role to the testicularphysiology and in particular to spermatogenesis, is still little understood The aim of the present research was to determine the impact of a single high dose (35mg1kg of body weight) of estrogen and anti-estrogen Tamoxifen, administered subcutaneously in 5-weekold rats, on the testis structure and spermatogenesis. The effects ofthese transient hormonal disruptions were evaluated one (short-term) and seven weeks (medium-term) after treatments by light and transmission electron microscopies, both associated to morphometric and stereological analysis. Moreover, TUNEL's method was employed in order to detect the apoptotic process on germ cells. The estrogen affected more drastically the testicular structure and the spermatogenesis when compared to Tamoxifen. In short term ana1ysis,the exposure to high doses of estrogen caused a 50% reduction in the testis weight, besides a reduction in the diameter of seminiferous tubules and population of Sertoli cells. This treatment also induced an increase in apoptosis and a total destruction of elongated spermatids. Even though the gonad-somatic-index had been recovered within seven weeks after the estrogen injection, apoptotic germ cell rate still remained tive times higher and the number of elongated spermatids was lower than that found in the control animal group. In short term, the exposure to Tamoxifen was less harrnful to the testis of young rats when compared to the estrogen, but in medium term it resulted in some similar effects such as the reduction of the seminiferous tubule diameter, high occurrence of germ apoptotic cells, and Leydig cell atrophy. Based on these results we conclude that transient exposure to estrogen and Tamoxifen induces aherations in testicular dynamics of young rats with a probable damage to the spermatogenesis of aduh animais / Mestrado / Biologia Celular / Mestre em Biologia Celular e Estrutural
38

Stromal and epithelial changes in breast cancer following endocrine treatment

Azadbakht, Narges January 2014 (has links)
Anti-oestrogens and aromatase inhibitors are currently used as endocrine therapies in breast cancer. Despite the significant role that these treatments play in reducing breast cancer mortality, some patients may display intrinsic and acquired therapeutic resistance. Different mechanisms are thought to contribute to endocrine resistance in patients treated with anti-oestrogens such as tamoxifen and aromatase inhibitors such as letrozole. The importance of epithelial-stromal interactions in progression of breast tumour and the potential contribution of these interactions in resistance to tamoxifen have been suggested using data from different studies. Stromal compartment has also been shown to exhibit possible prognostic and therapeutic significance in breast cancer. Therefore it is essential to acquire better understanding of the changes in stromal and epithelial cells that occur during successful and unsuccessful endocrine treatment. In this study an important trial in which patients received tamoxifen for short windows was under investigation. Biopsies were taken from these patients before and after treatment. These biopsies were available as formalin-fixed paraffin-embedded (FFPE) tissue blocks. Responding and non-responding patients were identified according to the Ki67 scores. Laser Capture Microdissection (LCM) was utilised to microdissect epithelial and stromal cells from the biopsies taken after treatment. The samples obtained following microdissection underwent RNA extraction and were subsequently used for gene expression profiling. Several differentially expressed genes in the epithelial and stromal compartments of tamoxifen responding and non-responding cases were identified. To assess the significance of the differentially expressed genes between the non-responding and responding cases, bioinformatics approaches were employed to incorporate the acquired data into functional enrichment analysis, pathway analysis and network construction. To examine the presence of possible predictive markers for therapeutic response and potential targets for therapy in breast cancer within the differentially expressed genes, data was compared to several published gene sets and publicly available datasets. Several significant genes involved in recognised pathways and networks were identified within the list of differentially expressed genes. The presence of previously proposed possible markers within the differentially expressed genes was also confirmed. These findings can be further explored for the future management of breast cancer.
39

Thioredoxin and Jab1 Control Estrogen- and Antiestrogen-Mediated Progression of the Cell Cycle Through p27 Interactions

Penney, Rosalind B 11 March 2011 (has links)
A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.
40

HEXIM1 as a Therapeutic Target in Hormone Resistant and Metastatic Breast Cancer

Ketchart, Wannarasmi 27 August 2012 (has links)
No description available.

Page generated in 0.0388 seconds