• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Targeted Radionuclide Therapy Using Nuclear Nanotechnology

Evans, Jordan Andrew 03 October 2013 (has links)
The objectives of this thesis are to produce radioactive antibody-conjugated gold nanoparticles to improve the efficacy of targeted radionuclide therapy for the treatment of cancer, and to demonstrate that this product can be produced at Texas A&M University. We have proposed a method for determining the distribution of radioactive nuclei per nanoparticle, which is critical for determining radiotherapeutic efficacy. Using the distribution of radioactive nuclei per nanoparticle, we have produced methods for calculating the radiative dose to tissue using nano-improved targeted radionuclide therapy, but more importantly we propose procedures to experimentally determine the efficacy of targeted radionuclide therapy improved by application of radioactive nanomaterials in combination with immunotherapy, nanomaterial cytotoxicity, and other cancer therapies such as chemotherapy. These methods can also be used to determine the efficacy of combinatory treatments as a function of time. Characterization of the antibody-nanoparticle attachment is critical; we have demonstrated successful antibody-nanoparticle conjugation using atomic force microscopy, dynamic light scattering, and agarose gel electrophoresis, providing more conclusive evidence of successful conjugation compared to flow cytometry. We provide a mathematical derivation from basic electron-transport principles which demonstrates the theoretical dosimetric advantages of applying radioactive nanomaterials to targeted radionuclide therapy. The general formulae can be applied to any tumor size, any radionuclide, and any pharmacokinetic nanoparticle distribution throughout the body, ultimately allowing a quick method of approximating the necessary activation time and treatment dosage parameters for a specific patient without burdensome Monte Carlo computational simulations. We further demonstrated that nano-TRT dosage to tumors should be considered as a function of radial position rather than average, as the dose across the tumor may be noticeably non-uniform causing some portions of the tumor to receive (potentially) significantly less dose than average.
2

Tumour Targeting using Radiolabelled Affibody Molecules : Influence of Labelling Chemistry

Altai, Mohamed January 2014 (has links)
Affibody molecules are promising candidates for targeted radionuclide-based imaging and therapy applications. Optimisation of targeting properties would permit the in vivo visualization of cancer-specific surface receptors with high contrast. In therapy, this may increase the ratio of radioactivity uptake between tumour and normal tissues.  This thesis work is based on 5 original research articles (papers I-V) and focuses on optimisation of targeting properties of anti-HER2 affibody molecules by optimising the labelling chemistry. Paper I and II report the comparative evaluation of the anti-HER2 ZHER2:2395 affibody molecule site specifically labelled with 111In (suitable for SPECT imaging) and 68Ga (suitable for PET imaging) using the thiol reactive derivatives of DOTA and NODAGA as chelators. The incorporation of different macrocyclic chelators and labelling with different radionuclides modified the biodistribution properties of affibody molecules. This indicates that the labelling strategy may have a profound effect on the targeting properties of radiotracers and must be carefully optimized. Paper III reports the study of the mechanism of renal reabsorption of anti-HER2 ZHER2:2395 affibody molecule. An unknown receptor (not HER2) is suspected to be responsible for the high reabsorption of ZHER2:2395 molecules in the kidneys. Paper IV reports the optimization and development of in vivo targeting properties of 188Re-labelled anti-HER2 affibody molecules. By using an array of peptide based chelators, it was found that substitution of one amino acid by another or changing its position can have a dramatic effect on the biodistribution properties of 188Re-labelled affibody molecules. This permitted the selection of –GGGC chelator whichdemonstrated the lowest retention of radioactivity in kidneys compared to other variants and showed excellent tumour targeting properties. Paper V reports the preclinical evaluation of 188Re-ZHER2:V2 as a potential candidate for targeted radionuclide therapy of HER2-expressing tumours. In vivo experiments in mice along with dosimetry assessment in both murine and human models revealed that future human radiotherapy studies using 188Re-ZHER2:V2 may be feasible. It would be reasonable to believe that the results of optimisation of anti-HER2 affibody molecules summarized in this thesis can be of importance for the development of other scaffold protein-based targeting agents.
3

CD133-Targeted Radionuclide Therapy and Molecular Imaging

Wyszatko, Kevin January 2024 (has links)
To address the unmet clinical need to eradicate treatment-resistant CD133+ cancer stems within tumors, a CSC-targeted radionuclide therapy (TRT) and companion diagnostic imaging probes were developed utilizing CD133-targeting antibodies and antibody fragments. In Chapter 1, background research providing context for the work in this Thesis is presented. In Chapter 2, a CD133-targeting antibody, RW03IgG, underwent radiolabeling with lutetium-177 to synthesize [177Lu]Lu-DOTA-RW03IgG for CD133-TRT. The CD133-TRT was evaluated for pharmacokinetics and treatment of a CD133 expressing human colorectal tumor bearing mouse model. Biodistribution studies on [177Lu]Lu-DOTA-RW03IgG demonstrated notable uptake in the colorectal tumors and off-target organ uptake consistent with previously reported antibody-based TRTs. Confirmation that tumor uptake was mediated by antibody-antigen binding was verified through co-injection with an excess dose of unlabeled RW03IgG. A dose-escalation therapy trial using [177Lu]Lu-DOTA-RW03IgG for treatment of the colorectal cancer mouse model revealed a dose-dependent reduction in tumor growth rate at well-tolerated doses. The decrease in tumor growth rate observed due to [177Lu]Lu-DOTA-RW03IgG treatment, along with an improvement in overall mouse survival, demonstrate the therapeutic efficacy of CD133-TRT. Additionally, histopathological and immunohistochemical (IHC) analyses indicated low off-target organ toxicity and significant anti-tumor effects. These findings suggested the potential for enhanced overall survival benefits through multiple doses. However, results on multiple-dosed CD133-TRT on the tumor growth rate and overall mouse survival were inconclusive. In Chapter 3, an orthotopic patient-derived glioblastoma (GBM) mouse model was developed that replicates anatomical pharmacokinetic challenges and CSC populations observed in patient tumors. Stereotactic engraftment of the patient GBM cells was optimized to reproducibly deliver tumor cells to the thalamus and growth was monitored using bioluminescence imaging. Ex vivo analysis confirmed various key characteristics of patient GBM, including CD133 expression, hypercellularity, and invasiveness. Biodistribution studies on [177Lu]Lu-DOTA-RW03IgG using the PDX GBM mouse model indicate antibody-antigen driven tumor uptake, determined through co-injection an excess dose of unlabeled RW03IgG. Ex vivo autoradiography supported the biodistribution results and showed elevated uptake of [177Lu]Lu-DOTA-RW03IgG in tumor relative to non-tumor bearing brain tissue. Chapters 4 and 5 centered on the development and evaluation of companion diagnostic CD133-targeted immunoPET probes. Chapter 4 specifically explored probes derived from the full antibody, RW03IgG. The probes were synthesized by conjugating RW03IgG with DFO-NCS to produce DFO-RW03IgG at different chelator-to-antibody ratios. The various DFO-RW03IgG conjugates were then radiolabeled with zirconium-89 to obtain [89Zr]-DFO-RW03IgG. Biodistribution studies and PET imaging revealed promising tumor uptake of [89Zr]-DFO-RW03IgG, and it was observed that higher chelator-to-antibody ratios led to increased accumulation in off-target organs. Chapter 5 investigated a probe derived from an scFv-Fc fragment of RW03, [89Zr]-DFO-RW03scFv-Fc. Biodistribution studies and PET images of colorectal tumor-bearing mice administered [89Zr]-DFO-RW03scFv-Fc showed favorable tumor uptake and low off-target organ accumulation. In Chapter 6, a probe for CD133-Photoacoustic Imaging (PAI) was synthesized through conjugation of RW03IgG with IR-783, an organic dye recognized for its favorable photoacoustic properties. Challenges were encountered in isolating the product, (IR-783)-RW03IgG, at high degrees of labeling (DOL) due to product aggregation. In vitro binding assays indicated that (IR-783)-RW03IgG (DOL = 1) maintained a comparable binding affinity to native RW03IgG. In vivo, colorectal tumors in mice administered (IR-783)-RW03IgG (DOL = 1) did not exhibit significant contrast from the background tissue, and the tumor PA signal did not differ significantly compared to tumors in mice administered an IR-783 labeled isotype IgG. The results suggest that a higher concentration of dye is needed within colorectal tumors for effective tumor visualization than what was provided by IR-783-RW03IgG. Chapter 7 investigated the use of Imaging Mass Cytometry (IMC) to simultaneously visualize [177Lu]Lu-DOTA-RW03IgG and multiple tumor biomarkers in tissue specimens collected from colorectal tumor xenograft mice treated with CD133-TRT. IMC showed undetectable concentrations of hafnium-177 (the decay product of lutetium-177) in tumors treated with CD133-TRT. However, lutetium-176 and lutetium-175, sourced from the carrier-added [177Lu]LuCl3 used in the synthesis of [177Lu]Lu-DOTA-RW03IgG, were present at levels sufficient for IMC visualization. The distribution of lutetium-176, representing [177Lu]Lu-DOTA-RW03IgG, within tumors, was imaged concomitantly with CD133, DNA damage markers, and several additional biomarkers that describe elements of the tumor microenvironment. These collective results endorse IMC as a useful tool to assess the distribution of TRT within tumors and uncover changes to the microenvironment in response to treatment. / Thesis / Doctor of Philosophy (PhD) / Targeted radionuclide therapy (TRT) and molecular imaging strategies were developed to aid in the elimination of the rare and particularly resilient Cancer Stem Cell (CSC) population in tumors. A fully human monoclonal antibody and antibody fragments targeting CD133, a molecular biomarker for CSCs, provided the means to deliver radioactive isotopes for therapy and imaging to CD133+ cells in tumors. The therapeutic efficacy of CD133-TRT for treatment of a colorectal cell line-derived xenograft mouse model was promising, and the treatment showed uptake in orthotopic patient derived glioblastoma tumors engrafted in mice. ImmunoPET probes targeting CD133 were optimized and successfully delineated CD133 expressing tumors from background tissue, warranting further evaluation using patient-representative cancer models. A non-invasive CD133-targeting Photoacoustic Imaging (PAI) probe was synthesized through conjugation of the CD133-targeting antibody to an organic dye, IR-783, although further probe optimization is required to provide tumor contrast. Tumor specimens from mice treated with CD133-TRT were assessed by Imaging Mass Cytometry (IMC), which revealed detectable concentrations of carrier isotopes from the therapy in the tumors, implicating the discovery of a powerful new tool for multiplexed single-cell level resolution imaging for cellular-scale analysis of targeted radionuclide therapy. The CSC-therapy and select molecular imaging probes generated in this Thesis warrant further evaluation using patient-representative mouse models of cancer.
4

Le RAFT-RGD radiomarqué avec un émetteur °- comme nouvel agent de radiothérapie interne vectorisée / Development of a new anti-cancer agent for targeted radionuclide therapy : ß- radiolabeled RAFT-RGD.

Petitprin, Aurélie 19 February 2013 (has links)
Le RAFT-RGD radiomarqué avec un émetteur β- comme nouvel agent de radiothérapie interne vectorisée. L'intégrine αvβ3 est fortement impliquée en oncogenèse à travers son rôle dans la néoangiogenèse tumorale, dans la prolifération et la survie des cellules cancéreuses et dans le processus métastatique. L'intégrine αvβ3 est exprimée faiblement dans la plupart des tissus. Par contre, elle est fortement exprimée par les cellules endothéliales activées lors de l'angiogenèse et par les cellules de nombreux types de cancers invasifs. Ces caractéristiques font de l'intégrine αvβ3 une excellente cible pour l'imagerie et la thérapie de ces tumeurs. Le RAFT-RGD (Regioselectively Addressable Functionalized Template-(cyclo-[RGDfK])4) est un derivé polypeptidique constitué de quatre peptides cyclo-RGD (spécifiques de l'intégrine αvβ3) fixés sur un groupe porteur RAFT. Le RAFT-RGD cible spécifiquement l'intégrine αvβ3 in vitro et in vivo et permet la détection par imagerie nucléaire ou par fluorescence de tumeurs exprimant αvβ3 sur des modèles précliniques. Le RAFT-RGD un excellent vecteur potentiel pour cibler les tumeurs exprimant αvβ3 et pour y délivrer des traitements, que ce soit des molécules de chimiothérapie ou des radionucléides de thérapie. Cette étude est la première à évaluer le potentiel thérapeutique du RAFT-RGD radiomarqué avec un émetteur β- sur un modèle de souris Nude porteuses de tumeurs exprimant l'intégrine αvβ3. Une injection de 37 MBq de 90Y-RAFT-RGD ou de 177Lu-RAFT-RGD permet de ralentir significativement la croissance de tumeurs exprimant l'intégrine αvβ3 par rapport aux souris contrôles non traitées ou traitées avec la même activité de la molécule de contrôle non spécifique de la cible, le RAFT-RAD. En comparaison, une injection de 30 MBq de 90Y-RAFT-RGD ne permet pas de ralentir la croissance de tumeurs n'exprimant pas l'intégrine αvβ3. Le RAFT-RGD présente un bon potentiel pour le traitement de tumeurs exprimant l'intégrine αvβ3 lorsqu'il est radiomarqué avec des émetteurs β-. Mots clés : intégrine αvβ3, RAFT-RGD, ciblage tumoral, radiothérapie interne vectorisée. / Β- emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neoendothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β- emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3-expressing tumors. An injection of 37 MBq of 90Y-RAFT-RGD or 177Lu-RAFT-RGD in mice with αvβ3-positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90Y-RAFT-RAD or 177Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90Y-RAFT-RGD had no efficacy for the treatment of αvβ3-negative tumors. 90Y-RAFT-RGD and 177Lu-RAFT-RGD are potent αvβ3-expressing tumor targeting agents for internal targeted radiotherapy. Keys words : integrin αvβ3, RAFT-RGD, tumour targeting, internal targeted radiotherapy.
5

Dosimetry Studies of Different Radiotherapy Applications using Monte Carlo Radiation Transport Calculations

Abbasinejad Enger, Shirin January 2008 (has links)
<p>Developing radiation delivery systems for optimisation of absorbed dose to the target without normal tissue toxicity requires advanced calculations for transport of radiation. In this thesis absorbed dose and fluence in different radiotherapy applications were calculated by using Monte Carlo (MC) simulations.</p><p>In paper I-III external neutron activation of gadolinium (Gd) for intravascular brachytherapy (GdNCB) and tumour therapy (GdNCT) was investigated. MC codes MCNP and GEANT4 were compared. MCNP was chosen for neutron capture reaction calculations. Gd neutron capture reaction includes both very short range (Auger electrons) and long range (IC electrons and gamma) products. In GdNCB the high-energetic gamma gives an almost flat absorbed dose delivery pattern, up to 4 mm around the stent. Dose distribution at the edges and inside the stent may prevent stent edge and in-stent restenosis. For GdNCT the absorbed dose from prompt gamma will dominate over the dose from IC and Auger electrons in an in vivo situation. The absorbed dose from IC electrons will enhance the total absorbed dose in the tumours and contribute to the cell killing.</p><p>In paper IV a model for calculation of inter-cluster cross-fire radiation dose from β-emitting radionuclides in a breast cancer model was developed. GEANT4 was used for obtaining absorbed dose. The dose internally in cells binding the isotope (self-dose) increased with decreasing β-energy except for the radionuclides with substantial amounts of conversion electrons and Auger electrons. An effective therapy approach may be a combination of radionuclides where the high self-dose from nuclides with low β-energy should be combined with the inter-cell cluster cross-fire dose from high energy β-particles.</p><p>In paper V MC simulations using correlated sampling together with importance sampling were used to calculate spectra perturbations in detector volumes caused by the detector silicon chip and its encapsulation. Penelope and EGSnrc were used and yielded similar results. The low energy part of the electron spectrum increased but to a less extent if the silicon detector was encapsulated in low z-materials.</p>
6

Dosimetry Studies of Different Radiotherapy Applications using Monte Carlo Radiation Transport Calculations

Abbasinejad Enger, Shirin January 2008 (has links)
Developing radiation delivery systems for optimisation of absorbed dose to the target without normal tissue toxicity requires advanced calculations for transport of radiation. In this thesis absorbed dose and fluence in different radiotherapy applications were calculated by using Monte Carlo (MC) simulations. In paper I-III external neutron activation of gadolinium (Gd) for intravascular brachytherapy (GdNCB) and tumour therapy (GdNCT) was investigated. MC codes MCNP and GEANT4 were compared. MCNP was chosen for neutron capture reaction calculations. Gd neutron capture reaction includes both very short range (Auger electrons) and long range (IC electrons and gamma) products. In GdNCB the high-energetic gamma gives an almost flat absorbed dose delivery pattern, up to 4 mm around the stent. Dose distribution at the edges and inside the stent may prevent stent edge and in-stent restenosis. For GdNCT the absorbed dose from prompt gamma will dominate over the dose from IC and Auger electrons in an in vivo situation. The absorbed dose from IC electrons will enhance the total absorbed dose in the tumours and contribute to the cell killing. In paper IV a model for calculation of inter-cluster cross-fire radiation dose from β-emitting radionuclides in a breast cancer model was developed. GEANT4 was used for obtaining absorbed dose. The dose internally in cells binding the isotope (self-dose) increased with decreasing β-energy except for the radionuclides with substantial amounts of conversion electrons and Auger electrons. An effective therapy approach may be a combination of radionuclides where the high self-dose from nuclides with low β-energy should be combined with the inter-cell cluster cross-fire dose from high energy β-particles. In paper V MC simulations using correlated sampling together with importance sampling were used to calculate spectra perturbations in detector volumes caused by the detector silicon chip and its encapsulation. Penelope and EGSnrc were used and yielded similar results. The low energy part of the electron spectrum increased but to a less extent if the silicon detector was encapsulated in low z-materials.
7

Multi-scale dosimetry for targeted radionuclide therapy optimisation / Dosimétrie multi-échelle pour l'optimisation de la radiothérapie interne vectorisée

Marcatili, Sara 20 October 2015 (has links)
La Radiothérapie Interne Vectorisée (RIV) consiste à détruire des cibles tumorales en utilisant des vecteurs radiomarqués (radiopharmaceutiques) qui se lient sélectivement à des cellules tumorales. Dans un contexte d'optimisation de la RIV, une meilleure détermination du dépôt d'énergie dans les tissues biologiques est primordiale pour la définition d'une relation dose absorbée - effet biologique et pour l'optimisation des traitement du cancer. Cela nécessite une évaluation quantitative de la distribution de l'activité (avec la technique d'imagerie moléculaire la plus appropriée) et d'effectuer le transport du rayonnement à l'échelle à laquelle se produisent les phénomènes biologiques pertinents. Les méthodologies à appliquer et les problématiques à établir dépendent strictement de l'échelle (cellule, tissu, organe) de l'application considérée, et du type de rayonnement en cause (photons, électrons, particules alpha). Mon travail de recherche a consisté à développer des techniques dosimétriques dédiées (dosimétrie mono-échelle) et innovantes, capables de prendre en compte la particularité de différents scénarios expérimentaux (cellulaire, pré-clinique, RIV clinique). / Targeted Radionuclide Therapy (TRT) consists in killing tumour targets by using radiolabeled vectors (radiopharmaceuticals) that selectively bind to tumour cells. In a context of TRT optimization, a better determination of energy deposition within biologic material is a prerequisite to the definition of the absorbed dose-effect relationship and the improvement of future cancer treatment. This requires being able to quantitatively assess activity distribution (with the most appropriate molecular imaging technique) and perform radiation transport at the scale at which biologically relevant phenomena occur. The methodologies that should be applied and the problematic to be faced strictly depend on the scale (cell, tissue, body) of the application considered, and on the type of radiation involved (photons, electrons, alpha). This research work consisted in developing dedicated dosimetric techniques (single-scale dosimetry) capable of taking into account the peculiarity of different experimental scenarios (cellular, pre-clinical, clinical TRT).
8

Nuclear structure studies with neutron-induced reactions : fission fragments in the N=50-60 region, a fission tagger for FIPPS, and production of the isomer Pt-195m / Études de la structure nucléaire avec des réaction induites par des neutron : Fragments de fission dans la région N=50-60, un marqueur d'événement de fission pour FIPPS et production de l'isomère Pt-195m

Wilmsen, Dennis 21 December 2017 (has links)
Ce travail s'inscrit dans le cadre d'études de structures nucléaires réalisées en utilisant des réactions de fission induites par neutrons froids. Il décrit successivement les résultats d'une étude sur des noyaux ayant un nombre de neutrons N=50-60, sur le développement d'un marqueur d'événements de fission et enfin sur la production de l'isomère Pt-195m. Chacun des différents sous-thèmes trouve son origine dans la campagne EXILL qui s'est déroulée en 2012-2013 et durant laquelle un spectromètre de grande efficacité pour la détection des rayonnements γ (EXOGAM) a été utilisé auprès du réacteur à haut flux de neutrons de l'Institut Laue-Langevin (ILL). Dans la première partie de cette thèse, les noyaux d'intérêt ont été produits par fission induites par des neutrons sur les cibles fissiles U-235 et Pu-241. Des méthodes de spectroscopie γ ont été appliquées pour l'identification des fragments de fission, l'attribution des transitions γ à un noyau et l'analyse des durées de vie moyenne des états excités. L'analyse des durées de vie moyenne des états excités dans la plage de quelques picosecondes à quelques nanosecondes a été réalisée en utilisant deux méthodes complémentaires. Dans les deux cas, il s'agit de réaliser un spectre en temps construit à partir de la coincidence entre une transition qui alimente le niveau mesuré et une transition qui le désexcite. Les durées de vie moyenne pour les noyaux Kr-92, Kr-93 et Zr-101 sont présentées. Dans la seconde partie, les premiers résultats du développement d'un nouveau détecteur pour la discrimination des fragments de fission sont présentés. Ce marqueur d'événements de fission est destiné à être utilisé sur le spectromètre FIssion Prompt Product γ-ray Spectrometer (FIPPS) de l'ILL. Dans le cadre de cette étude, deux conceptions de détecteurs différentes, basées sur un scintillateur en plastique solide et un scintillateur liquide organique, ont été testées. Dans la troisième partie, la possibilité de la population spécifique de l'isomère de spin dans Pt-195 est examinée au regard particulièrement de son utilisation en tant que radio-isotope en médecine nucléaire. Une telle activation spécifique pourrait être réalisée grâce à l'existence d'états excités dont la structure permettrait une population ciblée dans le cas de l'utilisation de réactions de photo-excitation. La recherche de tels états a été initiée lors d'une expérience de capture de neutrons à EXILL dans laquelle des états potentiels ont été identifiés. L'activation de l'isomère par ces états a ensuite été testée avec des réactions photonucléaires à l'aide du faisceau haute intensité disponible auprès de l'installation γ HIGS de TUNL (Triangle Universities Nuclear Laboratory, Duke, USA). / Within the scope of atomic nuclear structure studies with neutron-induced reactions, this work presents the results of a fission fragment study in the N=50-60 region, the development of a fission event tagger, and the production of the isomer Pt-195m. Each of the different sub-topics has its origin in the 2012/13 EXILL campaign, where nuclear structure studies were carried out with neutron-induced reactions, and explored with a γ-efficient detector array. In the first part of this thesis, the neutron-rich region around neutron number N=50-60 was investigated with neutron-induced fission reactions on the fissile targets U-235 and Pu-241. Gamma spectroscopy methods were applied for the identification of the respective fission fragments, the assignment of γ transitions, and the analysis of lifetimes of excited states. The slope fit method as well as the recently developed generalized centroid difference method were used for the analysis of lifetimes in the low picoseconds to sub-nanoseconds range. Lifetimes for the nuclei Kr-92, Kr-93 and Zr-101 are presented. In the second part, first results of the development of a new detector for the discrimination of fission fragments are presented. This fission event tagger is intended to be used at the FIssion Product Prompt γ-ray Spectrometer (FIPPS) at the Institut Laue-Langevin. Within the scope of this study, two different detector designs, based on a solid plastic scintillator and an organic liquid scintillator, respectively, were tested. In the third part the possibility of the specific population of the spin-isomer in Pt-195 is discussed with special regard to its use as radioisotope in nuclear medicine. Such a specific activation could be realized via certain “doorway states” in photo-excitation reactions. The search for these doorway states was initiated within a neutron capture experiment at EXILL where potential states were found. The activation of the isomer via these states was tested afterwards with photonuclear reactions using the high intense γ-beam HIGS of the TUNL facility.

Page generated in 0.1858 seconds