• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 11
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 71
  • 14
  • 14
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Porphyrinplatin(II)-Komplexe in der Tumortherapie : systematische Synthese und Testung neuer multifunktionaler Wirkstoffe /

Bart, Karl-Christian. January 2001 (has links) (PDF)
Univ., Diss.--Regensburg, 2001.
22

Infected biomaterials : new strategies for local anti-infective treatment /

Matl, Florian. January 2009 (has links)
Zugl.: München, University, Diss., 2009.
23

Der molekulare Mechanismus der Nitratreduktaseaktivität von Mycobacterium tuberculosis

Stermann, Marion. Unknown Date (has links) (PDF)
Tierärztl. Hochsch., Diss., 2003--Hannover.
24

EGFR-Targeted Polymeric Micelles For Targeted Pc 4-PDT Of Oropharyngeal Tumors

Master, Alyssa M. 23 August 2013 (has links)
No description available.
25

ENGINEERING RGD-MODIFIED LIPOSOMES FOR TARGETED DRUG DELIVERY TO ACTIVATED PLATELETS

Huang, Guofeng 18 July 2006 (has links)
No description available.
26

Transcription Inhibitors as Anti-Adhesion Agents

Dagia, Nilesh M. 14 July 2004 (has links)
No description available.
27

DUAL INHIBITION OF CATHEPSIN G AND CHYMASE AFTER ISCHEMIA REPERFUSION: THE ROLE OF INFLAMMATORY SERINE PROTEASES IN ISCHEMIA REPERFUSION INJURY

Hooshdaran, Bahman January 2017 (has links)
Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality in the world (4). Restoration of coronary flow to the ischemic myocardium by interventions such as angioplasty, thrombolytic treatment or coronary bypass surgery is the current standard therapy for AMI (5). However, reperfusion of the ischemic myocardium may result in paradoxical cardiomyocyte dysfunction and worsen tissue damage, in a process known as “reperfusion injury” (6). Ischemic reperfusion (IR) injury may intensify pathological processes that contribute to the generation of oxyradicals, disturbances in cation homeostasis, and depletion of cellular energy stores, which may elicit arrhythmias, contractile dysfunction, and ultrastructural damage of the myocardium. These changes can lead to heart failure and ultimately sudden death. The exact mechanisms of IR injury are not fully known (7). Molecular, cellular, and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidat / Bioengineering
28

Magnetic Targeted Drug Delivery

Leach, Jeffrey Harold 24 February 2003 (has links)
Methods of guiding magnetic particles in a controlled fashion through the arterial system in vivo using external magnetic fields are explored. Included are discussions of applications, magnetic field properties needed to allow guiding based on particle characteristics, hemodynamic forces, the uniformity of field and gradients, variable tissue characteristics, and imaging techniques employed to view these particles while in transport. These factors influence the type of magnetic guidance system that is needed for an effective drug delivery system. This thesis reviews past magnetic drug delivery work, variables, and concepts that needed to be understood for the development of an in vivo magnetic drug delivery system. The results of this thesis are the concise study and review of present methods for guided magnetic particles, aggregate theoretical work to allow proper hypotheses and extrapolations to be made, and experimental applications of these hypotheses to a working magnetic guidance system. The design and characterization of a magnetic guidance system was discussed and built. The restraint for this system that balanced multiple competing variables was primarily an active volume of 0.64 cm3, a workspace clearance of at least an inch on every side, a field of 0.3T, and a local axial gradient of 13 T/m. 3D electromagnetic finite element analysis modeling was performed and compared with experimental results. Drug delivery vehicles, a series of magnetic seeds, were successfully characterized using a vibrating sample magnetometer. Next, the magnetic seed was investigated under various flow conditions in vitro to analyze the effectiveness of the drug delivery system. Finally, the drug delivery system was successfully demonstrated under limiting assumptions of a specific magnetic field and gradient, seed material, a low fluid flow, and a small volume. / Master of Science
29

The Potential of Cellulose Nanocrystals in the Detection and Treatment of Cancer

Colacino, Katelyn 01 August 2013 (has links)
Conventional methods of cancer therapy have been severely limited by inefficient delivery of therapeutic doses without incidence of harsh and toxic side effects in normal tissues. Consequently, countless new methods for early detection and drug delivery have been investigated in the area of nanoparticles and hydrogels. Although many of these methods are promising, the complex nature of cancer increases the difficultly for the development of the perfect system. Cellulose nanocrystals (CNCs) have been studied widely for a variety of applications. Despite their advantages, investigations of their abilities in the biomedical field have not been explored. The goal of this project is to delve into the potential uses of CNCs in detection, targeted drug delivery, and potentiation of irreversible electroporation (IRE)-induced cell death in folate receptor (FR)-positive cancers. To accomplish this task we have prepared stable and reproducible CNCs from wood pulp via sulfuric acid hydrolysis. Furthermore, we have functionalized the surface of these nanoparticles and conjugated them with the targeting ligand folic acid (FA) and the fluorescent imaging agent fluorescein-5\'-isothiocyanate (FITC) to create FITC-CNC-FA; CNCs have also been conjugated with doxorubicin (DOX), a potent chemotherapeutic (DOX-ALAL-CNC-FA). We have determined FITC-CNC-FA's and DOX-ALAL-CNC-FA's ability to specifically target FR-positive cancer cells in vitro; meanwhile non-targeted CNCs (FITC-CNC) were shown unable to bind to these cell types. In addition, we have investigated FITC-CNC-FA's pharmacokinetic activity in vivo. To properly model the CNC conjugate's activity in vivo, a physiologically based pharmacokinetic (PBPK) model has been constructed. We have also examined CNCs' ability to potentiate a new technique for tumor ablation, IRE. Pre-incubation with FA-conjugated CNCs (CNC-FA) have shown an increase in cytotoxicity in FR-positive cancer cells induced by IRE. In addition, CNC-FA did not potentiate IRE-induced cytotoxicity in a FR-negative cancer cell type. For a more comprehensive understanding of CNC-FA's ability to potentiate IRE induced cytotoxicity, we optimized a 3D in vitro hydrogel system. Preliminary data suggest this method of experimentation will be more realistic to in vivo studies to be completed in the future. Together, these studies showcase CNCs as efficient and effective nano-carriers in tumor detection and treatment. / Ph. D.
30

Targeted release from lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours

Lyon, P. C. January 2016 (has links)
No description available.

Page generated in 0.0872 seconds