Spelling suggestions: "subject:"taylor polynomial"" "subject:"baylor polynomial""
1 |
Analysis on a Class of Carnot Groups of Heisenberg TypeMcNamee, Meagan 14 July 2005 (has links)
In this thesis, we examine key geometric properties of a class of Carnot groups of Heisenberg type. After first computing the geodesics, we consider some partial differential equations in such groups and discuss viscosity solutions to these equations.
|
2 |
A recursive formula for computing Taylor polynomial of quantileKuo, Chiu-huang 28 June 2004 (has links)
This paper presents a simple recursive formula to compute the Taylor polynomial of quantile for a continuous random variable. It is very easy to implement the formula in standard symbolic programming system, for example Mathematica (Wolfram, 2003). Applications of the formula to standard normal distribution and to the generation of random variables for continuous distribution with bounded support are illustrated.
|
3 |
O Polinômio e Série de Taylor: Um estudo com aplicaçõessantos, Eduardo Isidoro dos 07 August 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-05-02T16:28:27Z
No. of bitstreams: 1
Arquivototal.pdf: 6277340 bytes, checksum: 0dbd4fb516303e62d7475fa9335d391b (MD5) / Made available in DSpace on 2018-05-02T16:28:27Z (GMT). No. of bitstreams: 1
Arquivototal.pdf: 6277340 bytes, checksum: 0dbd4fb516303e62d7475fa9335d391b (MD5)
Previous issue date: 2017-08-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work,we present two important concepts: Taylor Polynomialand Taylor
Series. We discus show theTaylor Polynomial can be used toapproximate the value
of Analytic function sin the neighbor hoodo fagiven point, an destimate the precision
of the approximation obtained. Subsequently,we study the possibility oflocallyre-
presenting functions through a power system,called theTaylor Serie. We concludeby
presenting some application sof the result sobtained. / Neste trabalho,abordamos dois conceitos importantes:o Polinômiode Taylor e
a Série de Taylor. Apresentamos como o Polinômio de Taylor pode ser usado para
aproximar o valor de funções analíticas na vizinhança de um ponto determinado e esti-
mamos a precisão da aproximação obtida.Posteriormente,estudamos a possibilidade
de representar,localmente,funções através de uma serie de potências,chamadas série
de Taylor Finalizamos apresentando algumas aplicações dos resultados obtidos.
|
4 |
Aplicação do polinômio de Taylor na aproximação da função Seno / Application of the Taylor polynomial in approximation of the Sine functionCuri Neto, Emilio 03 July 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-31T11:26:53Z
No. of bitstreams: 2
Dissertação - Emílio Curi Neto - 2014.pdf: 3380066 bytes, checksum: d90415ab2be40c912a8f3437adf514bb (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-31T13:45:48Z (GMT) No. of bitstreams: 2
Dissertação - Emílio Curi Neto - 2014.pdf: 3380066 bytes, checksum: d90415ab2be40c912a8f3437adf514bb (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-10-31T13:45:48Z (GMT). No. of bitstreams: 2
Dissertação - Emílio Curi Neto - 2014.pdf: 3380066 bytes, checksum: d90415ab2be40c912a8f3437adf514bb (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-07-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work the main goal is focused on applying the theory of Taylor polynomial
approximations applied on the trigonometric function defined by f : [0;
2 ] ! R, where
f(x) = sin(x). To achieve this goal, eight sections were developed, in which initially a
reflection on the problem and the need to obtain the values in this respect in that it is
wide angle measure x is presented. Is presented and subsequently treated a problem
involving the movement of a pendulum, which uses the approximation sin(x) x
where x belongs to a certain range. In the sections that follow a literature review of
the theories of differential and integral calculus is presented, and the related theory
of Taylor approximation of functions by polynomials. Later we used these theories
to analyze and determine polynomials approximating the function f(x) = sin(x) in
a neighborhood of the point x = 0, and estimate the error when we applied these
approaches. At this time the error occurred due to the approach used in the pendulum
problem was also analyzed. Finally a hint of practice to be held in the classroom using
the theories treated here as well as the study of the problem of heat transfer in a bar
through the theory of Fourier activity is presented. / Neste trabalho o objetivo principal está focado em aplicar a teoria de Taylor relativa
à aproximações polinomiais aplicadas à função trigonométrica definida por f : [0;
2 ] !
R, onde f(x) = sen(x). Para alcançar esse objetivo, foram desenvolvidas oito seções,
nas quais inicialmente é apresentada uma reflexão sobre a necessidade e a problemática
de obtêr-se os valores desta relação a medida em que varia-se a medida do ângulo x.
Posteriormente é apresentado e tratado um problema envolvendo o movimento de um
pêndulo, o qual utiliza a aproximação sen(x) x onde x pertence o um certo intervalo.
Nas seções que seguem é apresentada uma revisão bibliográfica das Teorias do Cálculo
Diferencial e Integral, assim como da Teoria de Taylor relacionada à aproximação de
funções através de polinômios. Posteriormente utilizou-se estas teorias para analisar e
determinar polinômios que aproximam a função sen(x) em uma vizinhança do ponto
x = 0, assim como estimar o erro gerado ao utilizar-se estas aproximações. Nesse
momento também foi analisado o erro ocorrido devido à aproximação utilizada no
problema do pêndulo. Por fim é apresentada uma sugestão de atividade prática a ser
realizada em sala de aula utilizando as teorias aqui tratadas, assim como o estudo do
problema de transferência de calor em uma barra através da teoria de Fourier.
|
5 |
Paralelní numerické řešení parciálních diferenciálních rovnic / Partial Differential Equations Parallel SolutionsNečasová, Gabriela January 2014 (has links)
This thesis deals with the topic of partial differential equations parallel solutions. First, it focuses on ordinary differential equations (ODE) and their solution methods using Taylor polynomial. Another part is devoted to partial differential equations (PDE). There are several types of PDE, there are parabolic, hyperbolic and eliptic PDE. There is also explained how to use TKSL system for PDE computing. Another part focuses on solution methods of PDE, these methods are forward, backward and combined methods. There was explained, how to solve these methods in TKSL and Matlab systems. Computing accuracy and time complexity are also discussed. Another part of thesis is PDE parallel solutions. Thanks to the possibility of PDE convertion to ODE systems it is possible to represent each ODE equation by independent operation unit. These units enable parallel computing. The last chapter is devoted to implementation. Application enables generation of ODE systems for TKSL system. These ODE systems represent given hyperbolic PDE.
|
6 |
Numerické výpočty určitých integrálů / Finite Integrals Numerical ComputationsMikulka, Jiří January 2014 (has links)
The application of the finite integral of multiple variable functions is penetrating into more and more industries and science disciplines. The demands placed on solutions to these problems (such as high accuracy or high speed) are often quite contradictory. Therefore, it is not always possible to apply analytical approaches to these problems; numerical methods provide a suitable alternative. However, the ever-growing complexity of these problems places too high a demand on many of these numerical methods, and so neither of these methods are useful for solving such problems. The goal of this thesis is to design and implement a new numerical method that provides highly accurate and very fast computation of finite integrals of multiple variable functions. This new method combines pre-existing approaches in the field of numerical mathematics.
|
7 |
Une approche intrinsèque des foncteurs de Weil / An intrinsic approach of Weil functorsSouvay, Arnaud 23 November 2012 (has links)
Nous construisons un foncteur de la catégorie des variétés sur un corps ou un anneau topologique K, de caractéristique arbitraire, dans la catégorie des variétés sur A, où A est une algèbre de Weil, c'est-à-dire une K-algèbre de la forme A = K + N, où N est un idéal nilpotent. Le foncteur correspondant, noté T^A, et appelé foncteur de Weil, peut être interprété comme un foncteur d'extension scalaire de K à A. Il est construit à l'aide des polynômes de Taylor, dont nous donnons une définition en caractéristique quelconque. Ce résultat généralise à la fois des résultats connus pour les variétés réelles ordinaires, et les résultats obtenus dans le cas des foncteurs tangents itérés et dans le cas des anneaux de jets (A = K[X]/(X^{k+1})). Nous montrons que pour toute variété M, T^A M possède une structure de fibré polynomial sur M, et nous considérons certains aspects algébriques des foncteurs de Weil, notamment ceux liés à l'action du « groupe de Galois » Aut_K(A). Nous étudions les connexions, qui sont un outil important d'analyse des fibrés, dans deux contextes différents : d'une part sur les fibrés T^A M, et d?autre part sur des fibrés généraux sur M, en suivant l'approche d'Ehresmann. Les opérateurs de courbure d'une connexion sont induits par l'action du groupe de Galois Aut_K(A) et ils forment une obstruction à l'« intégrabilité » d'une connexion K-lisse en une connexion A-lisse / We construct a functor from the category of manifolds over a general topological base field or ring K, of arbitrary characteristic, to the category of manifolds over A, where A is a so-called Weil algebra, i.e. a K-algebra of the form A = K + N, where N is a nilpotent ideal. The corresponding functor, denoted by T^A, and called a Weil functor, can be interpreted as a functor of scalar extension from K to A. It is constructed by using Taylor polynomials, which we define in arbitrary characteristic. This result generalizes simultaneously results known for ordinary, real manifolds, and results for iterated tangent functors and for jet rings (A = K[X]/(X^{k+1})). We show that for any manifold M, T^A M is a polynomial bundle over M, and we investigate some algebraic aspects of the Weil functors, in particular those related to the action of the "Galois group" Aut_K(A). We study connections, which are an important tool for the analysis of fiber bundles, in two different contexts : connections on the Weil bundles T^A M, and connections on general bundles over M, following Ehresmann's approach. The curvature operators are induced by the action of the Galois group Aut_K(A) and they form an obstruction to the "integrability" of a K-smooth connection to an A-smooth one
|
Page generated in 0.0352 seconds