• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixing in stably stratified turbulent Taylor-Couette flow

Oglethorpe, Rosalind Leigh Frances January 2014 (has links)
No description available.
2

Classification of fine particles using a Taylor-Couette device

Tungapindi, Navina January 2009 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 18, 2009) Includes bibliographical references (p. 54-56).
3

Measuring the viscous flow behaviour of molten metals under shear

Ritwik January 2012 (has links)
The flow behaviour of liquid metals (Sn, Pb and Sn-Pb eutectic) under different shearing conditions is investigated. Experiments were performed with two designs of concentric cylinder viscometers: rotating the inner cylinder (Searle) and rotating the outer cylinder (Couette). The latter technique is uncommon and the equipment was optimised with standard oils. The flow behaviour for the metals differs in the two systems. The curves of 'apparent' viscosity versus shear rate may be divided into two regimes: I. At lower shear rates (<200 s-1): a reduction of 'apparent' viscosity with shear was observed with both viscometers. It is suggested that the high density and high surface tension of the metals and eccentricity between the cylinders at low shear rates, leads to instabilities. Results at low shear rates were therefore discarded and further detailed analysis would be required for a fuller understanding of this behaviour. II. At higher shear rates: a steady, shear-independent behaviour of 'apparent' viscosity with shear rate is observed in the Couette system (upto 600 s-1) whereas in the Searle system the 'apparent' viscosity increases with shear rate (upto 2600 s-1). From hydrodynamic theory about Newtonian fluids, it is suggested that in the Searle type viscometer, the fluid is unstable and Taylor vortices are expected at low shear rates (~80 s-1). This gives rise to an increase in the 'apparent' viscosity with shear rate. Whereas, in the Couette type, the flow is more stable, resulting in a steady 'apparent' viscosity. This interpretation is consistent with liquid metals behaving as Newtonian fluids, but further research is required to confirm this. The author suggests further experiments, with the prime one being the investigation of the fluid with counter and co-rotation of the cylinders in order to observe more complex flows. The results are expected to have implications in the modelling of flow for liquid metal processes, especially the initiation of Taylor vortices under the unstable flow conditions produced by rotating the inner cylinder.
4

A numerical study of incompressible Navier-Stokes equations in three-dimensional cylindrical coordinates

Zhu, Douglas Xuedong, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xiv, 139 p.; also includes graphics (some col.) Includes bibliographical references (p. 134-139). Available online via OhioLINK's ETD Center
5

Particle Separation Through Taylor-couette Flow And Dielectrophoretic Trapping

Bock, Christopher Paul 01 January 2010 (has links)
As the world population approaches seven billion, a greater strain is put on the resources necessary to sustain life. One of the most basic and essential resources is water and while two thirds of the earth is covered by water, the majority is either salt water (oceans and seas) or it is too contaminated to drink. The purpose of this project is to develop a portable device capable of testing whether a specific source of water (i.e. lake, river, well…) is potable. There are numerous filtration techniques that can remove contaminants and make even the dirtiest water clean enough for consumption but they are for the most part, very time consuming and immobile processes. The device is not a means of water purification but rather focuses on determining the content of the water and whether it is safe. Particles within the water are separated and trapped using a combination of a Taylor Couette fluid flow system and Dielectrophoretic electrodes. This paper explores Taylor Couette flow in a large gap and low aspect ratio system through theory and experimentation with early stage prototypes. Different inner cylinder radii, 2.12cm, 1.665cm and 1.075cm, were tested at different speeds approaching, at and passing the critical Taylor number, 3825, 4713 and 6923 respectively for each cylinder. Dielectrophoretic (DEP) electrodes were designed, fabricated, coated and tested using latex beads to determine the method of integrating them within the fluid flow system. Taylor Couette theory, in terms of the formation of vortices within the large gap, small aspect ratio system, was not validated during testing. The flow pattern generated was more akin to a chaotic circular Couette flow but still served to move the particles toward the outer wall. Fully integrated tests were run with limited success. Recommendations were made to pursue both circular Couette flow as the basis for iv particle separation and dimensional changes in the setup to allow for the formation of Taylor vortices by increasing the radius ratio but still allowing for a larger volume of fluid.
6

Nonlinear solutions of the amplitude equations governing fluid flow in rotating spherical geometries

Blockley, Edward William January 2008 (has links)
We are interested in the onset of instability of the axisymmetric flow between two concentric spherical shells that differentially rotate about a common axis in the narrow-gap limit. The expected mode of instability takes the form of roughly square axisymmetric Taylor vortices which arise in the vicinity of the equator and are modulated on a latitudinal length scale large compared to the gap width but small compared to the shell radii. At the heart of the difficulties faced is the presence of phase mixing in the system, characterised by a non-zero frequency gradient at the equator and the tendency for vortices located off the equator to oscillate. This mechanism serves to enhance viscous dissipation in the fluid with the effect that the amplitude of any initial disturbance generated at onset is ultimately driven to zero. In this thesis we study a complex Ginzburg-Landau equation derived from the weakly nonlinear analysis of Harris, Bassom and Soward [D. Harris, A. P. Bassom, A. M. Soward, Global bifurcation to travelling waves with application to narrow gap spherical Couette flow, Physica D 177 (2003) p. 122-174] (referred to as HBS) to govern the amplitude modulation of Taylor vortex disturbances in the vicinity of the equator. This equation was developed in a regime that requires the angular velocities of the bounding spheres to be very close. When the spherical shells do not co-rotate, it has the remarkable property that the linearised form of the equation has no non-trivial neutral modes. Furthermore no steady solutions to the nonlinear equation have been found. Despite these challenges Bassom and Soward [A. P. Bassom, A. M. Soward, On finite amplitude subcritical instability in narrow-gap spherical Couette flow, J. Fluid Mech. 499 (2004) p. 277-314] (referred to as BS) identified solutions to the equation in the form of pulse-trains. These pulse-trains consist of oscillatory finite amplitude solutions expressed in terms of a single complex amplitude localised as a pulse about the origin. Each pulse oscillates at a frequency proportional to its distance from the equatorial plane and the whole pulse-train is modulated under an envelope and drifts away from the equator at a relatively slow speed. The survival of the pulse-train depends upon the nonlinear mutual-interaction of close neighbours; as the absence of steady solutions suggests, self-interaction is inadequate. Though we report new solutions to the HBS co-rotation model the primary focus in this work is the physically more interesting case when the shell velocities are far from close. More specifically we concentrate on the investigation of BS-style pulse-train solutions and, in the first part of this thesis, develop a generic framework for the identification and classification of pulse-train solutions. Motivated by relaxation oscillations identified by Cole [S. J. Cole, Nonlinear rapidly rotating spherical convection, Ph.D. thesis, University of Exeter (2004)] whilst studying the related problem of thermal convection in a rapidly rotating self-gravitating sphere, we extend the HBS equation in the second part of this work. A model system is developed which captures many of the essential features exhibited by Cole's, much more complicated, system of equations. We successfully reproduce relaxation oscillations in this extended HBS model and document the solution as it undergoes a series of interesting bifurcations.
7

Bifurcations and symmetries in viscous flow

Kobine, James Jonathan January 1992 (has links)
The results of an experimental study of phenomena which occur in the flow of a viscous fluid in closed domains with discrete symmetries are presented. The purpose is to investigate the role which ideas from low-dimensional dynamical systems have to play in describing qualitative changes that take place with variation of the governing parameters. Such a descriptive framework already exists for the case of the Taylor-Couette system, where the domain possesses a continuous azimuthal symmetry group. The present investigation is aimed at establishing the typicality of previously reported behaviour under progressive reductions of azimuthal symmetry. In the first investigations, the fixed outer circular cylinder of the standard system is replaced with one of square cross-section. Thus there is now discrete Ζ<sub>4</sub> symmetry in the azimuthal direction. Knowledge of the two-dimensional flow field is used to establish the nature of the steady three-dimensional motion equivalent to Taylor vortex flow. It is shown that similar bifurcation sequences exist in both standard and square systems for the case of very small aspect ratio where a single Taylor cell is formed. This flow develops as the result of a bifurcation which breaks the Ζ<sub>2</sub> symmetry that is imposed on the annulus by two solid stationary ends. The study is then extended to consider time-dependent effects in the square system. Two different oscillatory single-cell flows are identified, and it is shown that each is the result of a Hopf bifurcation. Selection of a particular dynamic mode is found to depend on the aspect ratio of the system. A low-dimensional bifurcation structure is uncovered which connects the two modes in parameter space, and involves a novel type of steady single-cell flow. Finally, observations are reported of a nontrivial type of dynamical behaviour which bears strong resemblance to motion found in a circularly symmetric Taylor-Couette system that is related to the Šilnikov mechanism for finite-dimensional chaos. A second variant on the Taylor-Couette system is considered where the outer cylinder is shaped like a stadium. The effect is to reduce further the overall symmetry of the domain to a Ζ<sub>2</sub> × Ζ<sub>2</sub> group. The two-dimensional flow field is investigated using both numerical and experimental techniques. Time-dependent phenomena are then investigated in the three-dimensional flow over a relatively wide range of aspect ratio. It is found that a sequence of a Hopf bifurcation followed by period-doubling bifurcations exists up to a certain aspect ratio, beyond which there is an apparently sudden and reversible transition between regular and irregular dynamical behaviour. Although this transition is not of a low-dimensional nature, the experimental results suggest that it exists as the result of a coalescence of the bifurcations which are found at lower values of aspect ratio.
8

Granular Flow and Rheology under Shear, Vibration and Gas Flow

Sanghishetty, Jagan Mohan January 2024 (has links)
Granular flows are ubiquitous both in natural and industrial processes such as pharmaceuticals production, mining and food–processing. Within a gas-solid fluidized bed, fundamental phenomena such as heat and mass transfer are impacted by particle convection, mixing and segregation due to rising gas bubbles. The free-bubbling regime is promising in enhancing the gas-solid contact but its mathematically chaotic bubble motion make system design challenging. Furthermore, a better understanding of rheological characteristics of these gas-solid flows is pertinent to developing accurate mathematical descriptions of granular flows. Despite their decades of usage and significance in all walks of technology, gas-solid fluidized beds remain poorly understood. In the first section of this dissertation, we investigate the combined effects of vibration and gas flow on a binary gas-solid fluidized bed. At resonant conditions, this external excitation generates a periodic, triangular, equisized, structured array of rising bubbles, reducing the chaos. Through a combination of experiments, Computational Fluid Dynamics-Discrete Element Method (CFD-DEM), and Multi Fluid Model (MFM) simulations, we demonstrate that the structured bubbling facilitates particle mixing whereas the gas flow alone (no vibration conditions) results in smaller, unstructured bubbles that promote segregation. The CFD-DEM simulations accurately capture the bubble structuring and somewhat, qualitatively and quantitively, match with the optically imaged experimental data. These investigations provide valuable insights into the dynamics of particle mixing and segregation under complex fluidization conditions. The MFM simulations failed to predict the mixing observed, indicating a need for further refinement of these models. In the second section of this dissertation, we explore the complex rheological behavior of the dry, dense particulate flows using the Discrete Element Method (DEM) simulations. In these simulations, we choose 3−D Couette cell geometry to visualize Granular Taylor–Vortex flow for various particle diameters and densities. The simulations examined the effects of varying particle volume fractions, from 0.45 to 0.60, under different shear rates, revealing a distinct rheological transition from shear-thickening to Newtonian and finally to shear-thinning behavior. The formation and nature of these vortices were compared with those observed in continuum simulations of Newtonian and shear-thinning fluids, to elucidate the unique aspects of granular flow dynamics. The third section of this thesis investigated the rheology of granular particles subjected to 1−D shear combined with sinusoidal vibration, aiming to understand the effects on pressure, shear stress, and coordination number across a range of shear rates and particle fractions. A novel vibrational regime was observed at low shear rates, below a critical threshold, characterized by a rate-independent pressure intermediate between the inertial and quasi-static regimes. These findings provide significant insights while advancing our understanding of granular material dynamics.
9

Εσωτερικές και εξωτερικές ροές / Internal and external flows

Νιάκας, Νικόλαος 09 March 2011 (has links)
Στην παρούσα διατριβή αναπτύσσεται η γραμμικοποιημένη μέθοδος των πεπερασμένων διαφορών. Η μέθοδος αυτή αποτελεί νέα αριθμητική τεχνική επιλύσεως των διαφορικών εξισώσεων δευτέρας τάξεως, κανονικών και με μερικές παραγώγους και εφαρμόζεται σε εσωτερικές και εξωτερικές ροές. Συγκεκριμένα, στο πρώτο κεφάλαιο γίνεται εισαγωγή στις μεθόδους διακριτοποιήσεως μιας διαφορικής εξισώσεως και στον τρόπο επίλυσης ενός γραμμικού συστήματος αλγεβρικών εξισώσεων. Στο δεύτερο κεφάλαιο εκτίθεται η μέθοδος των Allen και Southwell για τη λύση της εξισώσεως της στροβιλότητας προκειμένου περί δισδιάστατης ροής και η τροποποίηση και βελτίωση της μεθόδου από τον Dennis. Εν συνεχεία περιγράφεται η περαιτέρω βελτίωση της μεθόδου, διά της οποίας ο πίνακας του συστήματος των συντελεστών των αγνώστων καθίσταται διαγωνίως υπέρτερος. Στο τρίτο κεφάλαιο η βελτιωμένη μέθοδος επεκτείνεται στις τρεις διαστάσεις με μεταβλητούς συντελεστές και εφαρμόζεται στην λύση αντιστοίχου προβλήματος ροής ιδανικού ρευστού εντός σωλήνα. Στο τέταρτο κεφάλαιο η παρούσα μέθοδος γενικεύεται μεταβλητούς συντελεστές. Στο πέμπτο κεφάλαιο επιλύεται η εξίσωση της στροβιλότητας στις τρεις διαστάσεις σε σύστημα κυλινδρικών συντεταγμένων και ο αλγόριθμος εφαρμόζεται στο πρόβλημα του von Kármán. Τέλος, στο έκτο κεφάλαιο εξετάζεται η περίπτωση της αριθμητικής εξομοίωσης στροβίλων Taylor προκειμένου περί ροής ιξώδους ρευστού, το οποίο περιέχεται εντός σφαιρικού κελύφους, η δε κίνηση του ρευστού προκαλείται από την διαφορική περιστροφή των δύο σφαιρών γύρω από την κοινή διάμετρό τους. / In the present dissertation a numerical technique is developed on the solution of ordinary and/or partial differential equations of second order with variable coefficients. In particular, in the first chapter we make a general introduction to the discretisation methods and to the methods of solution of a linear system of algebraic equations. In the second chapter the method of Allen and Southwell on the solution of the vorticity equation in two dimensional flow is presented as well as its modification and improvement by Dennis. The contribution of the present work is on the further improvement of the previous method, such that the matrix of the coefficients of the unknowns becomes diagonally dominant and its extension to three dimensional problems. The consecutive steps of the method (Linearized Finite Difference Method, LFDM) are worked out on the ordinary differential equation with variable coefficients. Next, the method is applied to the solution of two problems from Fluid Mechanics. In the third chapter the improved method is extended to three dimensions with variable coefficients. Accordingly the method is applied to the solution of the equations of motion of a perfect fluid moving in a straight tube. In the fourth chapter the present method is generalized with variable coefficients. In the fifth chapter the three dimensional equation of the vorticity expressed in cylindrical coordinates is solved and the results are applied to the von Kármán problem. Finally in the sixth chapter we use this method to simulate Taylor vortices in spherical annular flow in the presence of heat, the motion of the fluid being induced by the differencial rotation of two spheres about their common diameter.
10

UV Disinfection between Concentric Cylinders

Ye, Zhengcai 10 January 2007 (has links)
Outbreaks of food-born illness associated with the consumption of unpasteurized juice and apple cider have resulted in a rule published by the U.S. Food and Drug Administration (FDA) in order to improve the safety of juice products. The rule (21 CFR120) requires manufacturers of juice products to develop a Hazard Analysis and Critical Control Point (HACCP) plan and to achieve a 5-log reduction in the number of the most resistant pathogens. Ultraviolet (UV) disinfection is one of the promising methods to reach this 5-log reduction of pathogens. The absorption coefficients of juices typically vary from 10 to 40 1/cm and can be even higher depending on brand and processing conditions. Thin film reactors consisting of two concentric cylinders are suitable for inactivating pathogens in juices. When the two concentric cylinders are fixed, the flow pattern in the gap can be laminar Poiseuille flow or turbulent flow depending on flow rates. If the inner cylinder is rotating, and the rotating speed of the inner cylinder exceeds a certain value, the flow pattern can be either laminar or turbulent Taylor-Couette flow. UV disinfection between concentric cylinders in laminar Poiseuille flow, turbulent flow and both laminar and turbulent Taylor-Couette flow was investigated experimentally and numerically. This is the first systematic study done on UV disinfection between concentric cylinders in all three flow patterns. The present work provides new experimental data for pathogen inactivation in each of the three flow patterns. In addition, the present study constitutes the first systematic numerical CFD predictions of expected inactivation levels. Proper operating parameters and optimum gap widths for different flow patterns are suggested. It is concluded that laminar Poiseuille flow provides inferior (small) inactivation levels while laminar Taylor-Couette flow provides superior (large) inactivation levels. The relative inactivation levels are: laminar Poiseuille flow < turbulent flow < laminar Taylor-Couette flow.

Page generated in 0.0585 seconds