• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 62
  • 17
  • 13
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 451
  • 134
  • 106
  • 106
  • 104
  • 43
  • 37
  • 33
  • 33
  • 29
  • 29
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation into ageing and the effect of hydrated lime on mastics and mixture ageing

Alfaqawi, Rami Mohammed S. January 2018 (has links)
Age hardening of bitumen is one of the key factors determining the lifetime of an asphalt pavement. When the bitumen is excessively aged, the asphalt mixture will become brittle and its ability of supporting traffic-induced stresses and strains may significantly reduce, which can easily cause some cracking damage to the bound layer of a pavement. As bitumen is always in contact with mineral fillers in asphalt mixtures, the mechanisms of oxidative ageing of binders are significantly influenced by the physical and chemical interaction between fillers and the bitumen. For a long while, attempts to solve the ageing problem of asphalt binder by various methods, including polymer modification, nano-particle enhancement or functional improvement have been undertaken. Hydrated lime is one of many potential additives used in bitumen to improve the performance of asphalt mixtures. Hydrated lime in hot mix asphalt creates multiple benefits. A considerable amount of information exists in the literature on hydrated lime’s ability to control water sensitivity and its well-accepted ability as an anti-stripping agent to inhibit moisture damage. However, recent studies have shown that lime acts as an active filler and anti-oxidant. These properties create multiple benefits for pavements. Although the majority of research on the use of hydrated lime in asphalt mixtures has been carried out in the USA, the beneficial effects of hydrated lime have also been reported worldwide especially in Europe. In the UK, the use of hydrated lime only started in the early 2000’s and still needs a lot of research into its effect on the traditionally used asphalt materials in the UK pavement industry. This research primarily focuses on an in-depth investigation of bitumen ageing mechanisms and evaluation. Furthermore, this research aims to investigate the advantages of using hydrated lime to mitigate ageing in bitumen mastics and asphalts mixtures as a whole. The full project has been broken down into three parts. The first is a pure bitumen study, the second is a mastic level ageing study and the third is a mixture level ageing investigation. The bitumen ageing study investigated the effect of different ageing methods and parameters on bitumen ageing. In addition, this study focused on the mechanisms and factors affecting bitumen ageing and attempted to develop a better understanding of ageing evaluation methods with different perspectives; basic properties, mechanical and rheological behaviour using a dynamic shear rheometer (DSR) and finally a chemical approach with Fourier transform infrared (FTIR). The second level is the mastics level, which investigated the effect of different fillers on bitumen-filler mastic ageing. Particular attention was paid to study the benefits of using hydrated lime on ageing mitigating in the mastic phase. Furthermore, a detailed study at the mastic level was conducted to investigate the effect of hydrated lime on stiffening and ageing mitigation of bitumen mastics. Different means to evaluate this effect were implemented involving both physical and chemical properties. The evaluation testing was aimed at developing a better understanding of hydrated lime anti-oxidant effects on ageing mitigation. Moreover, special attention was paid to the interactions between hydrated lime and bitumen which affects the ageing of bitumen mastics. The third level was the mixture ageing level. In this study, the effect of hydrated lime replacement of the natural aggregate fillers was investigated. This effect on the asphalt mixtures was investigated by different tests on their mechanical properties such as indirect tensile stiffness modulus (ITSM), indirect tensile strength (ITS) and their fracture properties using the semi-circular bending (SCB) test. Furthermore, the effect of ageing on the recovered bitumen was evaluated. The results and conclusions from the performed studies indicate that hydrated lime slows down bitumen ageing more than granite and limestone fillers. This effect depends mainly on the bitumen type and filler concentration. In addition, the research showed that hydrated lime interacts differently with the different bitumens used in this study. This interaction affects stiffening and ageing properties of mastics and mixtures. Furthermore, results show that different ageing indices used in this project correlated well with each other and also with chemical changes. The detailed results from the FTIR tests on recovered fillers and bitumen from the mastics, showed the ability of hydrated lime to adsorb some of the bitumen components such as carboxylic acid products. This mechanism reduces the formation of ageing products and consequently reduces the age hardening of mastics and asphalt mixtures. Unlike hydrated lime, granite filler does not exhibit this ability to react with bitumen.
12

none

Chiou, Chwel-Shenq 12 July 2000 (has links)
none
13

De Lagardes ausgabe der arabische übersetzung des Pentateuchs, cod. Leiden arab. 377, machgeprüff

Hughes, John Caleb, January 1914 (has links)
Inaug.-diss.--Leipzig. / Vita.
14

De Lagardes ausgabe der arabische übersetzung des Pentateuchs, cod. Leiden arab. 377, machgeprüff

Hughes, John Caleb, January 1914 (has links)
Inaug.-diss.--Leipzig. / Vita.
15

Integral equation approach to reflection and transmission of a plane TE-wave at a (linear-nonlinear) dielectric film with spatially varying permittivity

Svetogorova, Elena. Unknown Date (has links) (PDF)
University, Diss., 2004--Osnabrück.
16

Design and characterisation of reclaimed asphalt mixtures with biobinders

Jiménez del Barco Carrión, Ana January 2017 (has links)
Most pavements around the world are built with asphalt mixtures. Traditional asphalt mixtures are composed of aggregates and bitumen. Current concern about environmental issues and scarcity of these raw materials has motivated the search for different recycled and renewable resources to be used in pavement engineering. Regarding recycling, the use of Reclaimed Asphalt (RA) materials is nowadays a common and valued practice. However, there still exist some concern about its performance when used in high amounts (>30%) due to its aged state. In terms of renewable resources, the relatively new concept of biobinders (binders manufactured from biomass), as suitable asphalt binder alternatives, is gaining force in pavement engineering. To date, biobinders have shown great potential not only to reduce bitumen demand, but also exhibiting good performance in terms of resisting the main distresses affecting pavements. However, biobinders need in-depth and detailed characterisation in terms of engineering properties before they can be used in practice. The combination of RA and biobinders can be considered as an innovative technique to reduce the consumption of aggregates and bitumen. Within this framework, the main aim of the research described in this thesis was to study the performance of RA mixtures with biobinders at binder and mixture scale in order to gain further understanding of their suitability to be used in actual pavements. For this purpose, biobinders manufactured from pine resin, linseed oil and by-products of the paper industry have been investigated as binders for the total replacement of the virgin bitumen needed in high RA content asphalt mixtures. The research initially focused on the design of the blend of RA binder and biobinders through the study of their conventional and rheological properties which were subsequently used as an input in the design of the asphalt mixtures. Once the design parameters were fixed, the blends of RA binder and biobinders were characterised in terms of their rheological, ageing and adhesion properties, and their performance tested in terms of study rutting, fatigue and thermal cracking resistance. Then, 50% RA mixtures and 70% RA mixtures were characterised for the same properties and the relationships between binder blends and asphalt mixtures were studied. The results showed that the biobinders studied are viscoelastic materials able to efficiently restore some of the properties of the RA binder in an equivalent or better way than conventional bitumens, increasing its viscous component and decreasing its stiffness. The mechanical performance of biobinders and bio-asphalt mixtures regarding rutting, fatigue, thermal cracking and moisture damage was found to be comparable to conventional mixtures. Good relationships were found between the binder blends and asphalt mixtures performance under the assumption of full blending, even though the exact degree of blending remained unknown. In this regard, the blend design performed as the first step was found to satisfactorily work as the input for the design of high RA content asphalt mixtures. Biobinders and bio-asphalt mixtures showed the same ageing tendency as conventional materials although ageing occurred at a faster rate, which can be considered the main drawback of their performance. In the light of the results obtained in this thesis for the materials studied, high RA content asphalt mixtures with biobinders can be considered promising materials to be used in pavement engineering. Full-scale experiments could be the final step for their development.
17

Effect of air voids on pavement thermal properties

Hassn, Abdushafi Alhashmi January 2017 (has links)
Harvesting Energy stands as one of the most promising techniques for approaching the global energy problem without depleting natural resources. Pavement solar energy harvesting (PSEH) technology is one of these techniques and it is considered as a new research area and currently under development which aims to enhance pavements for capture, and storage of thermal energy. To advance the study of PSEH, a study was made of the influence of moisture inside asphalt on its energy transport and storage abilities. Measurements of almost all the key thermal properties of asphalt are reported for a range of mixtures with various air void contents ranging from 4.5% to 30%. On the basis of this study it is concluded that, under dry conditions, asphalt mixtures with low air voids content have higher thermo-physical properties (i.e. density, thermal conductivity, specific heat capacity, thermal diffusivity and thermal effusivity) than asphalt mixtures with higher air voids content. Therefore, heating and cooling rates of dense asphalt mixtures were higher than those from porous asphalt mixtures. The total amount of energy accumulated in asphalt mixtures with different air voids content, but with the same constitutive materials, during heating and cooling depends only on the density of the mixtures. In addition, results indicate that asphalt mixtures with high air voids content accumulate less energy than asphalt mixtures with lower air voids content. It is concluded that mixtures with high air voids content are recommended to alleviate the urban heat island effect while mixtures with low air voids content are recommended for harvesting solar heat from pavements. It is concluded that under wet conditions, a relationship exists between the evaporation rate, the heat flux, and the surface temperature during water evaporation. In addition, the evaporation rate has been related to air voids parameters such as air voids content and diameter, tortuosity, or the Euler number. The study also investigated the feasibility of harvesting heat from asphalt concrete mixtures by Thermoelectric Power Generators (TEG) and how the air voids content can affect the recovery of this heat. It was found that increasing and/or maintaining the temperature difference between the hot side and cold side of a TEG is considered to be the most important factor in energy recovery application from asphalt pavement. It is concluded that maintaining the temperature gradient between the asphalt pavement and the subgrade could provide a potential of converting heat energy to electrical energy through the use of Thermoelectric Power generators.
18

Prediction of pavement surface deterioration

Liu, Yawen January 2017 (has links)
Prediction of pavement performance is important to pavement engineers. Pavement surface deterioration is a dynamic and complicated process. Moisture damage and fatigue are considered as two major causes of pavement deterioration. During a pavement’s service life, the presence of water can lead to loss of stiffness and strength of the asphalt pavement structure. Apart from that, the presence of water can accelerate the propagation and severity of already existing distress. High tensile strain at the bottom of an asphalt layer results fatigue cracking in a pavement. The goal of this research was to develop a series of computational models to predict pavement surface deterioration under the effects of moisture and traffic. The first task was to calculate the pavement surface water pressure under a moving tyre. The water is compressed underneath the tyres, generating a water pressure pulse. This pressure allows surface water to penetrate into the pavement structure. Then the asphalt pavement internal structure (voids distribution) was determined and the water pressure distribution inside the pavement structure was calculated for both fully saturated and partially saturated condition using the surface water pressure. The water pressure expands the voids inside the pavement. Consequently, stress and strain at the edge of the voids, due to frequent traffic passes can lead to failure of the pavement. A ravelling failure probability line was then predicted with the help of cavity expansion theory and asphalt crack propagation law. The case study for the performance of four different asphalt types (HRA, SMA, AC, DBM) using the failure probability calculation shows a good correspondence with their real performance which indicates that this process of predicting failure probability is generally acceptable.
19

The influence of hydrated lime on moisture susceptibility of asphalt mixtures

Zaidi, Syed Bilal Ahmed January 2018 (has links)
Moisture damage is one of the major causes of premature failure of road pavements especially the pavements made using the flexible design concept. This failure occurs as a result of cohesion and adhesion loss between the binder and binder-aggregate interfaces respectively. One of the many ways of mitigating moisture damage effect is the use of anti-stripping agents like liquid polymers, Portland cement, hydrated lime, fly ash, flue dust, etc. Hydrated lime has been found to be one of the most efficient anti-stripping agents among all common additives to asphalt mixtures. Although the majority of research on the use of hydrated lime in asphalt mixtures has been carried out in the USA, the beneficial effects of hydrated lime have also been reported worldwide especially in Europe. In the UK, the use of hydrated lime only started in the early 2000’s and still needs a lot of research in terms of selection of aggregates which can be improved with the use of hydrated lime. Most of the aggregates used in the UK for asphalt mixtures are of good field performance and it is difficult to find aggregates with poor quality. That is the reason why for this research four aggregate types which are commonly used in the UK for flexible road payments are selected. One type of bitumen having penetration grade of 40/60 has been selected for the research. The four aggregate types include granite, limestone, basalt and greywacke. This research focuses on an in-depth investigation of hydrated lime performance against moisture damage in bitumen mastics and asphalts mixtures as a whole. The full project has been broken down into three parts. The first part is a component level study, the second is mixture level study and the third is the study of practical adhesion. In the component level study, the effect of hydrated lime is quantified in terms of adhesion properties between a range of aggregates and binder combinations. For the component level testing, the effect of hydrated lime is quantified by adding it to the bitumen to make a mastic. The test techniques which are used for the component level assessment includes rolling bottle test and surface energy measurement. The second part focuses on the performance of hydrated lime as a whole inside asphalt mixture as filler replacement. The idea behind this methodology is to evaluate the real effect of hydrated lime in the mixture because if hydrated lime is used as additional filler in the mixture it will alter the mixture volumetric rather than simply affecting the mechanical response of the mixture through the properties of the hydrated lime. SATS test has been used to quantify the effect of hydrated lime against moisture damage at mixture level. The third part of the research deals with the measurement of practical adhesion with and without moisture conditioning with the help of pull-off and peel-off test techniques called PATTI and Peel test. The effect of hydrated lime either in the mastic or in the mixture has been found to be aggregate type dependent. Granite aggregates showed a good improvement in the performance against moisture damage resistance with the use of hydrated lime. Limestone aggregate didn’t respond to the addition of hydrated lime in the light of most of the techniques considered in this research and the same applied to the basalt aggregates. Greywacke, on the other hand, responded well and showed an improved moisture damage performance with the use of hydrated lime. Another good thing observed in the results was the consistency between the results among the different test techniques. The results obtained in each technique are in line with each other and give the same conclusion for most of the combinations studied in this research. To conclude, the effect of hydrated lime highly depends on the type of aggregate, its origin and its mineral composition. The aggregates used in this study were either of moderate or good field performance. Although a good improvement in the moisture damage performance of some combinations was clearly observed, it is highly recommended to incorporate the aggregates having bad field performance to see how hydrated lime improves their performance. Keywords: Moisture Damage, Hydrated lime, Surface Energy, Adhesion, Asphalt Mixture, Rolling Bottles Test (RBT), Saturation Ageing Tensile Stiffness (SATS) Test, PATTI test, Peel test.
20

Encapsulated healing agents for asphalt self-healing

Al-Mansoori, Tariq Hussein Abees January 2018 (has links)
Service life of asphalt roads could be extended by enhancing the natural self-healing ability of asphalt mixtures with encapsulated rejuvenators. When crack damage appears, the capsules release healing agents, which dissolve bitumen to flow into cracks. In this research, a new type of capsules was developed. These capsules contain sunflower oil as a rejuvenating agent. The size, morphology, mechanical strength and thermal stability of these capsules were investigated. The composition of the capsules, which nominally divides these capsules into different types based on their oil content, epoxy-cement shell and polymer amount, and its effect on capsule characteristics were also studied. In addition, the effect of the capsules on the chemical composition of bitumen with time of exposure to broken capsules was evaluated by the FTIR test. Results show that the characteristics of the capsules and their effect on chemical composition allow them to be incorporated in asphalt mixtures for further investigations for their effect on asphalt mechanical performance and self-healing. The mechanical performance of aged asphalt mixtures is investigated by using three nominally different types of capsules. Two of these were protected with a hard shell made of epoxy-cement composite; two coats with 1.0 o/w (oil-to-water), three coats with 1.0 o/w and without the hard shell with 0.5 o/w. The optimum amount of capsules used in all mixtures was 0.5% of total mass of asphalt mixture. Tests started by investigating the effect of mixing and compaction processes on these capsules. Results show that the hard shell (epoxy-cement) was not necessary for the capsules to survive mixing and compaction processes. Capsules deformed and broke with cyclic loading, releasing oil that diffused in the bitumen in less than 24h. Healing of cracks in aged asphalt mixtures led to an increase of stiffness under cyclic loading. However, asphalt specimens with capsules had lower deformation resistance. Computer tomography scanning of specimens showed large reductions in cracks around the capsules, after resting 4 days (96h) at 20oC. The mechanical properties of asphalt mixture containing capsules have been evaluated. Including water sensitivity, particle loss, stiffness and permanent deformation. One type of capsule (0.1 o/w) with three different capsule contents by mass of asphalt mixture were used, 0.1%, 0.25% and 0.5% with oil-to-bitumen ratio 1.1, 2.8 and 5.5, respectively. Capsules were strongly bonded to the asphalt mixture and results showed improved or at least similar mechanical properties to that of asphalt mixtures without capsules. This shows that capsules for asphalt self-healing can be safely used in the road, without affecting its quality. Asphalt containing capsules had slightly lower stiffness (no rest period), which can be easily solved by reducing the size of the capsules in the future. Furthermore, a new method for testing asphalt self-healing by the action of capsules was designed and tested. This method was based on a 3-point bending test (3PB) to beak samples and measure their flexural strength. The test was implemented by comparing the strength recovery of the broken beams after healing to their original flexural strength. The test was first applied to asphalt mastic beams, which are asphalt mixtures with higher bitumen content and fine aggregate and filler. Five different types of capsules used, based on their o/w ratios. These were 0.05, 0.1, 0.2, 0.5 and 1.0 o/w ratios with different amounts depending on their oil content so that they can provide a 7.2% of rejuvenator (sunflower oil) to the asphalt mastic beams. The effect of capsule content on self-healing was investigated by the 3PB on samples containing all those five capsule types (different contents) at one healing temperature, namely 20oC and different healing times. Effect of temperature on healing was investigated as well by 3PB test applied to mastic beams containing one type of capsules with 0.5 o/w ratio at four different temperatures, namely 5oC, 10oC, 15oC and 20oC. The main results showed that the capsules can break inside the asphalt mastic releasing the encapsulated oil to bitumen. Healing levels in the asphalt mastic samples with capsules were greater than samples without capsules, and the healing level of asphalt samples with, and without, capsules increased with the healing time. Additionally, the healing level given by the capsules inside the cracked asphalt mastic depended on the oil/water content of the capsule and on the temperature at which the healing process occurs. Finally, a correlation factor was developed between the healing level of asphalt mastic with and without capsules, independent of the temperature and time evaluated. Self-healing of real asphalt mixture was also investigated by same method of 3PB at different healing times and different temperatures. One type of capsules, namely 0.1 o/w with three different capsule contents, 0.10%, 0.25% and 0.50% by total weight of the mixture, were mixed with the asphalt. Eight different healing temperatures were used in this test, namely -5oC, 5oC, 10oC, 15oC, 20oC, 30oC, 40oC and 50oC. It was proven that the capsules can resist the mixing and compaction processes and break inside the asphalt mixture as a result of applying external mechanical loads, releasing the encapsulated oil. The capsules content in asphalt mixture has a significant influence on the healing level, where a higher capsule content led to higher healing levels. It was found that cracked asphalt mixture with capsules recovered 52.9% of initial strength at 20oC versus 14.0% of asphalt mixture without capsules. Likewise, asphalt with, and without, capsules presents an increase of the healing level when the temperature increases. Finally, it was proved that healing temperature over 40oC has significant influence on the healing levels of the asphalt beams.

Page generated in 0.0419 seconds