• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 1
  • Tagged with
  • 29
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Elektrochemische mediatorgestützte Bleiche molekulare Mechanismen und Realisierung einer Pilotanlage /

Mickel, Markus. Unknown Date (has links)
Universiẗat, Diss., 2002--Marburg.
22

Untersuchungen zur Dispersion und ihren Auswirkungen beim Übergang aus der Nutzungsphase in das Recycling Betrachtungen am Beispiel von Leichtgutanteilen von Waschmaschinen in Shredderprozessen /

Schäfer, Tobias. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
23

Einsatz eines Serviceroboters zur Automatisierung der Probenentnahme und des Probenmanagements während Kultivierungen tierischer Zellen in einer Technikumsumgebung

Poggendorf, Iris. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bielefeld.
24

Zur Auslegung liegender Flüssig-Flüssig-Abscheider mit Lochblecheinbauten /

Schneider, Dirk. January 2006 (has links)
Techn. Hochsch., Diss., 2005--Aachen.
25

Entwicklung eines Verfahrens zur trockenen Sortierung von Steinkohle /

Weitkämper, Lars. January 2007 (has links)
Techn. Hochsch., Diss.--Aachen, 2006.
26

Entwicklung einer schonenden Trocknungstechnologie zur Pulverisierung wässriger Naturstoffextrakte

Sert, Cumhur January 2008 (has links)
Zugl.: Bochum, Univ., Diss., 2008
27

Three step modelling approach for the simulation of industrial scale pervaporation modules

Schiffmann, Patrick 21 August 2014 (has links) (PDF)
The separation of aqueous and organic mixtures with thermal separation processes is an important and challenging task in the chemical industry. Rising prices for energy, stricter environmental regulations and the increasing demand for high purity chemicals are the main driving forces to find alternative solutions to common separation technologies such as distillation and absorption. These are mostly too energy consumptive and can show limited separation performance, especially when applied to close boiling or azeotropic mixtures. Pervaporation can overcome these thermodynamic limitations and requires less energy because only the separated components need to be evaporated. This separation technology is already well established for the production of anhydrous solvents, but not yet widely distributed in the chemical and petrochemical industry due to some crucial challenges, which are still to overcome. Besides the need of high selective membranes, the development of membrane modules adapted to the specific requirements of organoselective pervaporation needs more research effort. Furthermore, only few modelling and simulation tools are available, which hinders the distribution of this process in industrial scale. In this work, these issues are addressed in a combined approach. In close collaboration with our cooperation partners, a novel membrane module for organophilic pervaporation is developed. A novel technology to manufacture high selective polymeric pervaporation membranes is applied to produce a membrane for an industrially relevant organic-organic separation task. A three step modelling approach ranging from a shortcut and a discrete to a rigorous model is developed and implemented in a user interface. A hydrophilic and an organophilic membrane are characterised for the separation of a 2-butanol/water mixture in a wide range of feed temperature and feed concentration in order to establish a generally valid description of the membrane performances. This approach is implemented in the three developed models to simulate the novel membrane module in industrial scale. The simulations are compared to the results of pilot scale experiments conducted with the novel membrane module. Good agreement between simulated and experimental values is reached.
28

Three step modelling approach for the simulation of industrial scale pervaporation modules

Schiffmann, Patrick 07 February 2014 (has links)
The separation of aqueous and organic mixtures with thermal separation processes is an important and challenging task in the chemical industry. Rising prices for energy, stricter environmental regulations and the increasing demand for high purity chemicals are the main driving forces to find alternative solutions to common separation technologies such as distillation and absorption. These are mostly too energy consumptive and can show limited separation performance, especially when applied to close boiling or azeotropic mixtures. Pervaporation can overcome these thermodynamic limitations and requires less energy because only the separated components need to be evaporated. This separation technology is already well established for the production of anhydrous solvents, but not yet widely distributed in the chemical and petrochemical industry due to some crucial challenges, which are still to overcome. Besides the need of high selective membranes, the development of membrane modules adapted to the specific requirements of organoselective pervaporation needs more research effort. Furthermore, only few modelling and simulation tools are available, which hinders the distribution of this process in industrial scale. In this work, these issues are addressed in a combined approach. In close collaboration with our cooperation partners, a novel membrane module for organophilic pervaporation is developed. A novel technology to manufacture high selective polymeric pervaporation membranes is applied to produce a membrane for an industrially relevant organic-organic separation task. A three step modelling approach ranging from a shortcut and a discrete to a rigorous model is developed and implemented in a user interface. A hydrophilic and an organophilic membrane are characterised for the separation of a 2-butanol/water mixture in a wide range of feed temperature and feed concentration in order to establish a generally valid description of the membrane performances. This approach is implemented in the three developed models to simulate the novel membrane module in industrial scale. The simulations are compared to the results of pilot scale experiments conducted with the novel membrane module. Good agreement between simulated and experimental values is reached.
29

Investigations on Strategic Element Recovery by an Underground Membrane Pilot Plant from In-Situ Extracted Bioleaching Solutions

Götze, Katja, Haseneder, Roland, Braeuer, Andreas Siegfried 02 January 2025 (has links)
Focusing on the selective extraction of the critical raw materials indium and germanium from real bioleaching solutions, extended studies have been carried out using Europe’s first underground hybrid membrane pilot plant (TRL6). In order to transfer former laboratory experiments to pilot scale, NF99 (Alfa Laval) was used for the evaluation of membrane permeance and ion retention. A performance test of microfiltration (MF) and nanofiltration (NF) showed high permeances with low root-mean-square deviation under feed variation (5.2% for MF, 4.7% for NF). Depending on the feed load, a significant permeance drop of up to 57% for MF (3 bar) and 26% for NF (10 bar, 1.1 m s−1) was observed. The NF retention performance showed that, without regular chemical cleaning, the selectivity between the target elements degraded. By introducing acidic-basic cleaning steps, it was possible to keep the retention behavior at an approximately constant level (In 91.0 ± 1.3%; Ge 18.2 ± 5.5%). In relation to the specified target, the best results could be achieved at low pressure (7.5 bar) and a maximum overflow velocity of 1.1 m s−1, with a retention of 88.4% for indium and 8.8% for germanium. Moreover, the investigations proved the functionality and long-term stability of the underground membrane device.

Page generated in 0.0321 seconds