• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 11
  • 7
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 147
  • 147
  • 77
  • 56
  • 55
  • 23
  • 22
  • 20
  • 18
  • 18
  • 16
  • 16
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development and in silico evaluation of an expression platform based on E.coli for the production of a recombinant beta-glucosidase. / Desenvolvimento e avaliação in silico de uma plataforma de expressão baseada em E. coli para a produção de beta-glicosidase recombinante.

Ferreira, Rafael da Gama 08 April 2019 (has links)
The enzymatic conversion of lignocellulosic biomass into fermentable sugars is a promising approach for producing renewable fuels and chemicals. However, the cost of the fungal enzymes usually employed in this process remains a significant bottleneck for manufacturing low value-added products from biomass. A potential route to increase hydrolysis yield, and thereby to reduce hydrolysis cost, would be to supplement the fungal enzymes with their lacking enzymatic activities, such as Beta-glucosidase. To produce such enzymes at a low cost, the bacterium Escherichia coli is a strong contender, owing to its ability to grow rapidly on simple and inexpensive media, and to achieve high levels of productivity. Nevertheless, there is hardly any techno-economic analysis of low-value protein production using E. coli in the literature, and, more generally, there are very few techno-economic analyses of low-value protein production ever reported, with the exception of cellulase production by Trichoderma reesei. In particular, the biotechnological application of recombinant E. coli platforms equipped with toxin-antitoxin systems to ensure plasmid stability remains largely unexplored, and its economic impact, unknown. As such, this work presents a comprehensive techno-economic analysis of the industrial production of a low-cost enzyme (Beta-glucosidase) using both E. coli BL21(DE3) and E. coli SE1, a modified BL21(DE3) strain equipped with a toxin-antitoxin system for plasmid maintenance. Moreover, this study describes the actual cloning and expression of a Beta-glucosidase enzyme into E. coli BL21(DE3) and E. coli SE1, and the development of a novel inoculum production scheme that exploits the features of the SE1 strain, based on repeatedly recycling a fraction of the inoculum cells. The results of the techno-economic analysis project an enzyme production cost of 316 US$/kg in the baseline scenario, which is considerably higher than the values reported in the literature for the fungal cocktails. The facility-dependent cost, which is strongly associated with the cost of equipment, accounts for roughly half of the estimated cost, while the cost of raw materials, especially IPTG and glucose, and the cost of consumables are all quite significant. However, the simulation of multiple scenarios and optimization measures suggest that the enzyme cost can be substantially reduced on many fronts, such as: substituting the carbon source for cheaper alternatives; reducing the amount of IPTG used for induction; using an E. coli strain capable of extracellular production; or eliminating the steps of concentration and stabilization of the enzyme, in the case of on-site enzyme utilization. Developing E. coli strains capable of high rEnzyme volumetric productivities can also significantly reduce the cost of the enzyme, up to approximately 135 US$/kg in the scenario of highest productivity. In addition, based on the experimental results with the E. coli SE1 system, an inoculum recycle strategy that avoids the need of an extensive seed train was simulated, resulting in a significant reduction of the enzyme cost. Finally, the combination of multiple process improvements could lead to an enzyme cost near 20 US$/kg of protein, which comes close to the cost of fungal cellulases and demonstrates the great biotechnological potential of recombinant E. coli platforms. / A conversão enzimática de biomassa lignocelulósica em açúcares fermentescíveis é uma via promissora para a produção de combustíveis e produtos químicos renováveis. No entanto, o custo das enzimas fúngicas usualmente empregadas nesse processo permanece um gargalo significativo para a fabricação de produtos de baixo valor agregado a partir de biomassa. Uma possível estratégia para aumentar o rendimento da hidrólise e, assim, reduzir seu custo, seria suplementar as enzimas fúngicas com suas atividades enzimáticas deficientes, tais como a enzima Beta-glicosidase. Para produzir tais enzimas a um baixo custo, a bactéria Escherichia coli é uma forte candidata, dada a sua capacidade de crescer rapidamente em meios simples e baratos e de alcançar altos níveis de produtividade. No entanto, na literatura quase não há análises técnico-econômicas de produção de proteínas de baixo valor agregado utilizando E. coli e, de forma mais geral, há muito poucas análises técnico-econômicas de produção de proteínas de baixo valor agregado publicadas, com exceção da produção de celulases por Trichoderma reesei. Em particular, a aplicação biotecnológica de plataformas recombinantes baseadas em E. coli dotadas de sistemas toxina-antitoxina para garantir a estabilidade plasmidial segue em larga medida inexplorada, e seu impacto econômico, desconhecido. Assim, este trabalho apresenta uma análise técnico-econômica abrangente da produção industrial de uma enzima de baixo custo (Beta-glicosidase) usando E. coli BL21 (DE3) e E. coli SE1, uma cepa de BL21 (DE3) modificada que possui um sistema toxina-antitoxina para manutenção plasmidial. Além disso, este estudo descreve a clonagem e expressão de uma Beta-glicosidase em E. coli BL21 (DE3) e E. coli SE1, assim como o desenvolvimento de um novo método de produção de inóculo que tira proveito das peculiaridades da linhagem SE1, baseado em reciclar repetidamente uma fração das células do inóculo. Os resultados da análise técnico-econômica apontam para um custo de produção da enzima de 316 US$/kg no cenário-base, valor consideravelmente superior àqueles relatados na literatura para os coquetéis fúngicos. Os custos de overhead da planta, que estão fortemente associados ao custo de aquisição dos equipamentos, são responsáveis por aproximadamente metade do custo total, enquanto o custo de matérias-primas, especialmente IPTG e glicose, e o custo de consumíveis são bastante significativos. Porém, a simulação de múltiplos cenários e medidas de otimização sugerem que o custo da enzima pode ser substancialmente reduzido em muitas frentes, tais como: a substituição da fonte de carbono por alternativas mais baratas; a redução da quantidade de IPTG usado para indução; a utilização de cepas capazes de produzir a enzima extracelularmente; ou a eliminação das etapas de concentração e estabilização da enzima, em caso de utilização da enzima in situ. O desenvolvimento de cepas de E. coli capazes de atingir altas produtividades volumétricas de rEnzima também pode reduzir significativamente o seu custo, chegando a US$ 135/kg no cenário de maior produtividade. Com base nos resultados experimentais com a linhagem E. coli SE1, uma estratégia de reciclagem de inóculo que evita a necessidade de um extenso trem de inoculação também foi simulada, gerando significativa diminuição do custo da enzima. Por fim, a combinação de múltiplas melhorias no processo poderia levar a um custo de enzima em torno de 20 US$/kg de proteína, valor que se aproxima do custo das celulases fúngicas e que demonstra o grande potencial biotecnológico de plataformas de expressão baseadas em E. coli recombinante.
62

On Techno-economic Evaluation of Wind-based DG

Albadi, Mohammed 21 January 2010 (has links)
The growing interest in small-scale electricity generation located near customers, known as Distributed Generation (DG), is driven primarily by emerging technologies, environmental regulations and concerns, electricity market restructuring, and growing customer demand for increased quality and reliability of the electricity supply. Wind turbines are one of the renewable DG technologies that have become an important source of electricity in many parts of the world. Wind power can be used in many places to provide a viable solution to rising demand, energy security and independence, and climate change mitigation. This research aims broadly at facilitating the integration of wind-based DG without jeopardizing the system’s economics and reliability. To achieve this goal, the thesis tackles wind power from three perspectives: those of the policy maker, the investor, and the system operator. Generally, the economic viability of a project is determined within the framework of relevant policies. Therefore, these policies influence the decisions of potential investors in wind power. From this perspective, chapters 3 and 4 investigate the influence of policies on the economic viability of wind-based DG projects. In chapter 3, the role of Ontario’s taxation and incentive policies in the economic viability of wind-based DG projects is investigated. In this study, the effects of provincial income taxes, capital cost allowances, property taxes, and relevant federal incentives are considered. Net Present Value (NPV) and Internal Rate of Return (IRR) for different scenarios are used to assess the project’s viability under the Ontario Standard Offer Program (SOP) for wind power. In chapter 4, the thesis proposes the use of wind power as a source of electricity in a new city being developed in the Duqm area of Oman, where no policies supporting renewable energy exist. The study shows that the cost of electricity produced by wind turbines is higher than that of the existing generation system, due to the subsidized prices of domestically available natural gas. However, given high international natural gas prices, the country’s long-term Liquefied Natural Gas (LNG) export obligations, and the expansion of natural gas-based industries, investments in wind power in Duqm can be justified. A feed-in tariff and capital cost allowance policies are recommended to facilitate investments in this sector. From a wind-based DG investor’s perspective, the optimal selection of wind turbines can make wind power more economical, as illustrated in chapters 5 and 6. In chapter 5, the thesis presents a new generic model for Capacity Factor (CF) estimation using wind speed characteristics at any site and the power performance curve parameters of any pitch-regulated wind turbine. Compared to the existing model, the proposed formulation is simpler and results in more accurate CF estimation. CF models can be used by wind-based DG investors for optimal turbine-site matching applications. However, in chapter 6, the thesis demonstrates that using CF models as the sole basis for turbine-site matching applications tends to produce results that are biased towards higher towers but do not include the associated costs. Therefore, a novel formulation for the turbine-site matching problem, based on a modified CF formulation that does include turbine tower height, is introduced in chapter 6. The proposed universal Turbine-Site Matching Index (TSMI) also includes the effects of turbine rated power and tower height on the initial capital cost of wind turbines. Chapter 7 tackles wind power from a power system operator’s perspective. Despite wind power benefits, the effects of its intermittent nature on power systems need to be carefully examined as penetration levels increase. In this chapter, the thesis investigates the effects of different temporal wind profiles on the scheduling costs of thermal generation units. Two profiles are considered: synoptic-dominated and diurnal-dominated variations of aggregated wind power. To simulate wind profile impacts, a linear mixed-integer unit commitment problem is formulated in a GAMS environment. The uncertainty associated with wind power is represented using a chance constrained formulation. The simulation results illustrate the significant impacts of different wind profiles on fuel saving benefits, startup costs, and wind power curtailments. In addition, the results demonstrate the importance of the wide geographical dispersion of wind power production facilities to minimize the impacts of network constraints on the value of the harvested wind energy and the amount of curtailed energy.
63

On Techno-economic Evaluation of Wind-based DG

Albadi, Mohammed 21 January 2010 (has links)
The growing interest in small-scale electricity generation located near customers, known as Distributed Generation (DG), is driven primarily by emerging technologies, environmental regulations and concerns, electricity market restructuring, and growing customer demand for increased quality and reliability of the electricity supply. Wind turbines are one of the renewable DG technologies that have become an important source of electricity in many parts of the world. Wind power can be used in many places to provide a viable solution to rising demand, energy security and independence, and climate change mitigation. This research aims broadly at facilitating the integration of wind-based DG without jeopardizing the system’s economics and reliability. To achieve this goal, the thesis tackles wind power from three perspectives: those of the policy maker, the investor, and the system operator. Generally, the economic viability of a project is determined within the framework of relevant policies. Therefore, these policies influence the decisions of potential investors in wind power. From this perspective, chapters 3 and 4 investigate the influence of policies on the economic viability of wind-based DG projects. In chapter 3, the role of Ontario’s taxation and incentive policies in the economic viability of wind-based DG projects is investigated. In this study, the effects of provincial income taxes, capital cost allowances, property taxes, and relevant federal incentives are considered. Net Present Value (NPV) and Internal Rate of Return (IRR) for different scenarios are used to assess the project’s viability under the Ontario Standard Offer Program (SOP) for wind power. In chapter 4, the thesis proposes the use of wind power as a source of electricity in a new city being developed in the Duqm area of Oman, where no policies supporting renewable energy exist. The study shows that the cost of electricity produced by wind turbines is higher than that of the existing generation system, due to the subsidized prices of domestically available natural gas. However, given high international natural gas prices, the country’s long-term Liquefied Natural Gas (LNG) export obligations, and the expansion of natural gas-based industries, investments in wind power in Duqm can be justified. A feed-in tariff and capital cost allowance policies are recommended to facilitate investments in this sector. From a wind-based DG investor’s perspective, the optimal selection of wind turbines can make wind power more economical, as illustrated in chapters 5 and 6. In chapter 5, the thesis presents a new generic model for Capacity Factor (CF) estimation using wind speed characteristics at any site and the power performance curve parameters of any pitch-regulated wind turbine. Compared to the existing model, the proposed formulation is simpler and results in more accurate CF estimation. CF models can be used by wind-based DG investors for optimal turbine-site matching applications. However, in chapter 6, the thesis demonstrates that using CF models as the sole basis for turbine-site matching applications tends to produce results that are biased towards higher towers but do not include the associated costs. Therefore, a novel formulation for the turbine-site matching problem, based on a modified CF formulation that does include turbine tower height, is introduced in chapter 6. The proposed universal Turbine-Site Matching Index (TSMI) also includes the effects of turbine rated power and tower height on the initial capital cost of wind turbines. Chapter 7 tackles wind power from a power system operator’s perspective. Despite wind power benefits, the effects of its intermittent nature on power systems need to be carefully examined as penetration levels increase. In this chapter, the thesis investigates the effects of different temporal wind profiles on the scheduling costs of thermal generation units. Two profiles are considered: synoptic-dominated and diurnal-dominated variations of aggregated wind power. To simulate wind profile impacts, a linear mixed-integer unit commitment problem is formulated in a GAMS environment. The uncertainty associated with wind power is represented using a chance constrained formulation. The simulation results illustrate the significant impacts of different wind profiles on fuel saving benefits, startup costs, and wind power curtailments. In addition, the results demonstrate the importance of the wide geographical dispersion of wind power production facilities to minimize the impacts of network constraints on the value of the harvested wind energy and the amount of curtailed energy.
64

Techno-economic studies of environmentally friendly Brayton cycles in the petrochemical industry

Nkoi, Barinyima 10 1900 (has links)
Brayton cycles are open gas turbine cycles extensively used in aviation and industrial applications because of their advantageous volume and weight characteristics. With the bulk of waste exhaust heat and engine emissions associated, there is need to be mindful of environmentally-friendliness of these engine cycles, not compromising good technical performance, and economic viability. This research considers assessment of power plants in helicopters, and aeroderivative industrial gas turbines combined-heat-and-power (ADIGT-CHP) in the petrochemical industry. Thus, it consists of two parts: part A focuses on performance analysis of helicopter gas turbines, while part B entails technoeconomic and environmental risk assessment of ADIGT-CHP in the petrochemical industry. The investigation encompasses comparative assessment of simple cycle (SC) and advanced gas turbine cycle options including the component behaviours and the environmental and economic analysis of the systems. The advanced cycles considered include: recuperated (RC), intercooled (IC), intercooled-recuperated (ICR), and low pressure compressor zero-staged (LPC-ZS), cycles. The helicopter engines are analysed and subsequently converted to small-scale ADIGT engines. Also, modelling combined-heat-and-power (CHP) performances of small-scale (SS), and large-scale (LS) ADIGT engines is implemented. More importantly, a large part of the research is devoted to developing a techno-economic model for assessing, predicting, and comparing viability of simple and advanced cycle ADIGT-CHP in the petrochemical industry in terms of net present value (NPV), internal rate of return (IRR), and simple payback period (SPBP). The techno-economic performances of the ADIGT-CHP cycles are measured against the conventional case of grid power plus on-site boiler. Besides, risk and sensitivity of NPV with respect to uncertain changes in grid electricity cost, gas fuel cost, emission cost, and electricity export tariff, are investigated. Two case studies underlie the development of the techno-economic model. One case study demonstrates the application of the model for large-scale (LS) ADIGT-CHP, and the other for small-scale (SS) ADIGT-CHP, all in the petrochemical industry. By so doing, techno-economic and environmental risk analysis framework (a multi-disciplinary preliminary design assessment tool comprising performance, emissions, economic, and risk modules) is adapted to ADIGT-CHP in the petrochemical industry, which is the aim of this research. The investigation and results led to the conclusions that advanced cycle helicopter and ADIGT engines exhibit higher thermal efficiencies than simple cycle, and that savings exist in operational costs of ADIGT-CHP above the conventional case. Thus, for both SS ADIGT-CHP, and LS ADIGT-CHP cases, all ADIGT-CHP cycles are profitable than the conventional case. For LS ADIGT- CHP category, the IC ADIGT-CHP is the most profitable, whereas for SS ADIGT-CHP category, the RC ADIGT-CHP is the most profitable. The contribution to knowledge of this research is the development of a technoeconomic model for assessing, predicting, and comparing viability of simple and advanced cycle ADIGT-CHP in the petrochemical industry in terms of NPV, SPBP, and IRR over the conventional case of grid power plus on-site boiler. A second contribution is the derivation of simple and advanced cycle small-scale ADIGT and ADIGT-CHP from helicopter engines. Cont/D.
65

Techno-economic Assessment of Charcoal Production for Carbon Sequestration

Thakkar, Jignesh A Unknown Date
No description available.
66

HYDROGEN-FIRED GAS TURBINE FOR POWER GENERATION WITH EXHAUST GAS RECIRCULATION : Emission and economic evaluation of pure hydrogen compare to natural gas

Gibrael, Nemir, Hassan, Hamse January 2019 (has links)
The member states of European Union aim to promote the reduction of harmful emissions. Emissions from combustion processes cause effects on human health and pose environmental issues, for example by increasing greenhouse effect. There are two ways to reduce emissions; one is to promote renewable energy sources and the other to utilize more effectively the available fossil fuels until a long-term solution is available. Hence, it is necessary to strive for CO2 mitigation technologies applied to fossil fuels. Low natural gas prices together with high energy efficiency have made gas turbines popular in the energy market. But, gas turbine fired with natural gas come along with emissions of CO2, NOx and CO. However, these disadvantages can be eliminated by using gas turbine with precombustion CO2 capture, separating carbon from the fuel by using fuel reforming process and feeding pure hydrogen as a fuel. Hydrogen fired gas turbines are used in two applications such as a gas turbine with pre-combustion CO2 capture and for renewable power plants where hydrogen is stored in case as a backup plan. Although the CO2 emissions are reduced in a hydrogen fired gas turbine with a pre-combustion CO2 capture, there are still several challenges such as high flame temperatures resulting in production of thermal NOx. This project suggests a method for application of hydrogen fired gas turbine, using exhaust gas recirculation to reduce flame temperature and thus reducing thermal NOx. A NOx emission model for a hydrogen-fired gas turbine was built from literature data and used to select the best operating conditions for the plant. In addition, the economic benefits of switching from natural gas to pure hydrogen are reported. For the techno-economic analysis, investment costs and operating costs were taken from the literature, and an economic model was developed. To provide sensitivity analysis for the techno-economic calculation, three cases were studied. Literature review was carried out on several journal articles and websites to gain understanding on hydrogen and natural gas fired gas turbines. Results showed that, in the current state, pure hydrogen has high delivery cost both in the US and Europe. While it’s easy to access natural gas at low cost, therefore in the current state gas turbine fired with natural gas are more profitable than hydrogen fired gas turbine. But, if targeted hydrogen prices are reached while fuel reforming process technology are developed in the coming future the hydrogen fired gas turbine will compete seriously with natural gas.
67

Biochar in the Höganäs sponge iron process – techno-economic analysis of integrated production

Olofsson, Oscar January 2018 (has links)
Biomass-based reducing agents have a potential to substitute fossil reducing agents in the steel industry. However, the industrial use of biomass-based reducing agents is currently in an early stage of development and has not yet been considered as a means to reduce fossil CO2 emissions, even though the use of fossil-based reducing agents for the iron and steel making cause the highest share of CO2 emissions. This master thesis presents a techno-economic analysis of a 10 MW biochar production plant integrated with sponge iron production in Höganäs. In this study, a steady-state process model was developed, where state-of-the-art research and development in biochar production for increased biochar yield was applied and adapted, using the principle of bio-oil recycle. The developed process model was used to evaluate the biochar production plant, in terms of conversion efficiency, production costs and CO2 emissions, for different process configurations. The results show that bio-oil recycle with 20 wt.% bio-oil increases the energy yield of biochar with 14%. However, it was found that bio-oil recycle increases the required heat input of pyrolysis which led to reduced plant efficiency with 4%-units and increased biochar production costs of 500-1000 SEK/ton biochar. It was found that system integration with Höganäs can reduce the production cost of biochar from over 5000 SEK/ton to under 2000 SEK/ton, where the most significant integration aspect was flue gas integration. The sensitivity analysis showed that the cost of biomass feedstock and total capital investment were the most sensitive input parameters. It was found that system integration with Höganäs was essential to achieve production costs of biochar below the price of fossil reducing agents. It was also found that co-produced bio-oil becomes a main product, essential for the economic performance of the biochar plant, even though the intended main product was the biochar.
68

Modelling and Analysis of Mobile Energy Transmission for Offshore Wind Power : An analysis of flow batteries as an energy transmission system for offshore wind power

Lundin, Rasmus, Beitler-Dorch, Benjamin January 2018 (has links)
A comparison between a traditional fixed high voltage direct current energy transmission system and a mobile transmission system utilizing vanadium redox flow batteries has been conducted in this degree work.  The purpose of this comparison was to evaluate if a mobile energy transmission system could be competitive in terms of energy efficiency and cost-effectiveness for use in offshore wind power applications. A literary study was made to fully grasp the various technologies and to create empirical ground of which cost estimation methods and energy calculations could be derived. A specific scenario was designed to compare the two transmission systems with the same conditions. To perform the comparison, a model was designed and simulated in MATLAB. The results from the model showed that the flow battery system fell behind in energy efficiency with a total energy loss of 33.3 % compared to the 11.7 % of the traditional system, future efficiency estimations landed it at a more competitive 17.5 %. The techno-economic results proved that a mobile flow battery system would be up to nine times more expensive in comparison to a traditional transmission system, with the best-case scenario resulting in it being roughly two times more expensive. The main cause of this was found out to be the expensive energy subsystem, specifically the electrolyte, used in the flow battery system. Several environmental risks arise when using a flow battery system with this electrolyte as well which could harm marine life severely. In conclusion; with further development and cost reductions, a case could be made for the advantages of a truly mobile energy transmission system. Specifically, in terms of the pure flexibility and mobility of the system, allowing it to circumvent certain complications. The mobility of the system gives the possibility of selling energy where the spot prices are at their highest, providing a higher revenue potential compared to a traditional fixed system. As for now though, it is simply too expensive to be a viable solution.
69

Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

January 2014 (has links)
abstract: Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses--utility-side, consumer-side, and combined analyses--to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations--Chicago, Phoenix, Seattle--with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location--solar insolation and load profile--was also found to affect the time of year at which the largest net negative system load was realized. / Dissertation/Thesis / Masters Thesis Engineering 2014
70

Integration of thermochemical heat storage with a municipal district heating system : In future scenario with large variations in electricity price

Farahmand Ghaffarpour, Mehdi, Ros, Henrik January 2018 (has links)
This thesis investigates the feasibility and benefits of integrating Thermochemical heat Storage (THS) into a CHP (Combined Heat and Power) plant. A case study is done for the CHP-plant in Sala, Sweden, with a maximum heat output of 20.9 MW and maximum electricity output of 9.6 MW. The THS type considered is calcium oxide in a hydroxide system. The fluctuations in electricity price for years 2020, 2030 and 2040 are considered and low-price electricity is used as a charging source for THS. During charging the superheated steam (endothermic reaction) is used to cover some of the district heating demand. The high temperature discharge from the THS is used as reheat in the Rankine cycle. The operations are modeled in Ebsilon and optimization is done in MATLAB using genetic algorithm with the objective to achieve maximum annual revenue. The results suggest that it is not feasible to introduce THS with electricity as a charging source in year 2020, but in 2030 and 2040 THS shows promising potential. The biggest increase in revenue comes from reduced fuel consumption, and, to a lesser extent, increased income from electricity. It is concluded that Calcium hydroxide is a promising candidate for integration into CHP during large electricity price fluctuation. The main drivers for the feasibility of this combination are high fuel price and large fluctuations of electricity price.

Page generated in 0.0441 seconds