• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 362
  • 67
  • 60
  • 21
  • 13
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 1314
  • 447
  • 444
  • 430
  • 369
  • 359
  • 359
  • 261
  • 250
  • 249
  • 243
  • 243
  • 165
  • 157
  • 156
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Source and propagation effects of Rayleigh waves from Central Asian earthquakes.

Patton, Howard John January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Science. / Microfiche copy available in Archives and Science. / Bibliography: leaves 279-290. / Ph.D.
732

Thermal and mechanical evolution of continental convergence zones : Zagros and Himalayas.

Bird, George Peter January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Lindgren. / Vita. / Bibliography: leaves 385-402. / Ph.D.
733

The tectonic evolution of the North Central Caribbean plate margin

Goreau, Peter David Efran January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 229-245. / by Peter David Efran Goreau. / Sc.D.
734

The origin and tectonic history of the Southwest Philippine Sea.

Louden, Keith Edward January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Vita. / Includes bibliographies. / Ph.D.
735

The origin of the ninetyeast ridge and the northward motion of India, based on DSDP paleolatitudes.

Peirce, John Wentworth January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Vita. / Bibliography : leaves 223-233. / Ph.D.
736

Tectonic evolution of the Aefjord-Sitas area, Norway-Sweden

Hodges, Kip Vernon January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1982. / Microfiche copy available in Archives and Science / Two folded maps in pocket. / Includes bibliographies. / by Kip Vernon Hodges. / Ph.D.
737

Magnetite Mineralization of the Hammondville Pluton: Poly-Phase Kiruna Type IOCG Magnetite-Apatite Deposits in the Lyon Mountain Granite

Geer, Phillip 18 December 2020 (has links) (PDF)
Recent mapping of the Eagle Lake Quadrangle, NY, coupled with whole-rock geochemistry and microscopy has offered insight into the petrogenesis of the magnetite-apatite deposits of the Hammondville mining district in the eastern Adirondack Mountains. This study provides insight into the magmatic history of the ca. 1060-1050 Ma Lyon Mountain Granite (Hammondville Pluton) which is intimately related to, and hosts the deposits in this area. Magnetite seams are commonly surrounded by well layered magnetite gneiss, which typically parallel the seams, although in some outcrops appear to be slightly truncated by them. Mineralization is generally concordant with the weak layering found throughout the rest of the pluton, and similarly lacks a pervasive metamorphic fabric. Sub-solidus deformation is recorded in some localized shear zones that occur in both the seams and host-granite indicating post-crystallization and post-mineralization deformation events. These episodes could have provided conduits for fluids responsible for growing younger zircon that past workers dated and interpreted as a separate time of mineralization. We conclude that magnetite mineralization likely occurred as separate magma, or magnetite rich fluid, injected into the Lyon Mountain Granite either as a syn-magmatic process, or while it was still a crystalline mush.
738

The Timing of Deformation in the Four Peaks Area, central Arizona, and relevance for the Mazatzal Orogeny

Mako, Calvin A 07 November 2014 (has links) (PDF)
The Mazatzal orogeny (1.66-1.60 Ga) is a key element of the tectonic evolution of the North American continent during the Proterozoic (Whitmeyer and Karlstrom, 2007). Recently, Mesoproterozoic detrital zircon grains (1.55-1.45 Ga) have been found in metasedimentary rocks that were thought to have been deformed during the Paleoproterozoic Mazatzal orogeny (Jones et al. 2011; Doe et al. 2012, 2013; Daniel et al. 2013). Some type examples Mazatzal deformation now seem to be too young to have been deformed in the accepted time of that orogeny (1.66-1.60 Ga) and may have been deformed in the younger, newly defined, Picuris orogeny. This leads to questions regarding the timing and nature of the Mazatzal orogeny and its importance in the evolution of the North American continent. The object of this research is to constrain the timing of deformation related to the Mazatzal and Picuris orogenies and clarify the Proterozoic history of the North American continent. The Four Peaks area in central Arizona has been selected as an ideal location to tightly constrain the timing of deformation. The area hosts a package of Proterozoic metasedimentary rocks that are folded into a kilometer-scale syncline, surrounded by vi Mesoproterozoic to Paleoproterozoic granitoids. The Four Peaks syncline has been considered a type example of Mazatzal-age deformation (Karlstrom and Bowring, 1988). Zircon and monazite geochronology are presented along with structural and petrologic data in order to understand the geologic history of the Four Peaks area. The evidence suggests that three deformation events occurred at ~1675 Ma, 1665-1655 Ma and 1490-1450 Ma. Sedimentary deposition occurred 1665-1655 Ma and 1520-1490 Ma with a significant disconformity in between these episodes. Both the Mazatzal and Picuris orogenies can be associated with periods of deformation, sedimentary deposition and pluton emplacement. The most significant shortening event, which formed the Four Peaks syncline, occurred during Mesoproterozoic time and was related to the Picuris orogeny.
739

Seismic Imaging of a Granitoid-Greenstone Boundary in the Paleoarchean Pilbara Craton

Prasad, Anusha 13 March 2023 (has links)
The mode of tectonics by which early Archean proto-continents were deformed was investigated in the Pilbara Craton in Western Australia, which has not been substantially tectonically deformed since ~3.2 Ga. The craton consists of a unique dome and keel structure where vertical, low-grade metamorphism basaltic greenstone keels surround large granitic (TTG) domes. The dominant model for 3.5-3.2 Ga deformation in the Pilbara is gravity-driven vertical tectonics, or partial convective overturn in a hot crust. In this model, the granitic bodies rose upward as solid-state diapirs, and the greenstones "sagducted" downward around the granitic bodies. Australian scientists acquired deep seismic reflection data crossing a granitoid-greenstone boundary. Their processing did not image the geologically mapped steep dip of the boundary because standard methods limit the maximum dip. A 37-km section of these data were reprocessed using 2D Kirchhoff prestack depth migration to include vertical dips. The western half of the migrated section images a granitoid dome with weak to no reflectivity that extends deeper than 4 km. The eastern half images 2-3 km of layered volcanic rocks of the Fortescue Group overlying the greenstones. Seismic velocity models created using travel-time tomography suggest a thin weathering layer overlying slightly fractured crystalline rocks. These fractures close within 200-300 m depth, and velocity reaches bedrock speeds consistent with expected values of granitoids to the west and volcanic rocks of the Fortescue Group to the east. The best migrated image contains several reflections with dips (~45-55˚) cross-cutting each other from both directions at the location of the expected granitoid-greenstone boundary. This strongly suggests the presence of steep dips in the upper ~1.5 km but does not provide a definitive image. This inconclusive result is due to strong surface-wave noise, the crooked 2D seismic line, and the 3D nature of the geologic boundary at the seismic line. A very small seismic velocity gradient within the crystalline bedrock limits the maximum depth to which vertical features can be imaged. / Master of Science / The Pilbara craton is one of the few exposed and intact pieces of continents that were formed ~3.2 billion years ago. This research analyzes how these early land masses were deformed. There are two methods by which early land masses evolved—vertical tectonics (a more rudimentary, gravity-driven form of plate movement) or horizontal tectonics (which is closer to modern-day tectonics and requires many stages of deformation). This area has a unique dome-and-keel structure where greenstones (metamorphosed volcanics) are vertically wrapped around large granitic domes. Studying the vertical features of the greenstones will allow us to ascertain how tectonics evolved in the area. A seismic survey was conducted in 2018 in the area. These data were reprocessed to include steep dips to extract the exact location of the steeply dipping boundary between the dome and keel structure at depth. The resulting image contains inconclusive evidence due to the physical limitations of the geology and the sharp bend in the seismic line. Further studies need to be done to determine if the Pilbara Craton was formed by vertical tectonics.
740

Kinematic Evolution, Metamorphism and Exhumation of the Greater Himalayan Sequence, Mount Everest Massif, Tibet/Nepal

Jessup, Micah John 15 May 2007 (has links)
The Himalayan orogen provides an incredible natural laboratory to test models for continent-continent collision. The highest peaks of the Himalayas are composed of the Greater Himalayan Sequence (GHS), which is bound by a north-dipping low angle detachment fault above (South Tibetan detachment; STD) and by a thrust fault below (Main Central thrust; MCT). Assuming simultaneous movement on these features, the GHS can be modeled as a southward extruding wedge or channel. Channel flow models describe the coupling between mid-crustal flow, driven by gradients in lithostatic pressure between the Tibetan Plateau and the Indian plate, and focused denudation on the range front. Although the general geometry and shear sense criteria for these bounding shear zones has been documented, prior to this investigation, relatively few attempts had been made to quantify the spatial and temporal variation in flow path history for rocks from an exhumed section of the proposed mid-crustal channel. Results from this investigation demonstrate that mid-crustal flow at high deformation temperatures was distributed throughout the proposed channel. As these rocks began to exhume to shallower crustal conditions and therefore lower temperatures, deformation began to become partitioned away from the core of the channel and into the bounding shear zones. Based on these results a new method (Rigid Grain Net) to measure the relative contributions of pure and simple shear (vorticity) is proposed. Detailed thermobarometric analysis was conducted on rocks from the highest structural level in the Khumbu region, Nepal to construct pressure-temperature-time-deformation paths during the tectonic evolution of the GHS between ~32-16 Ma. Another aspect of the project suggests that the most active feature of the region is the N-S trending Ama Drime Massif (ADM). By combining new structural interpretation with existing remote sensing data this investigation proposes that the ADM is being exhumed during extension that is coupled with denudation in the trans-Himalayan Arun River gorge. Together these data provide important insights into the dynamic links between regional-scale climate and crustal-scale tectonics. / Ph. D.

Page generated in 0.0496 seconds