• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 23
  • 1
  • Tagged with
  • 327
  • 327
  • 327
  • 327
  • 44
  • 44
  • 23
  • 20
  • 20
  • 19
  • 17
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

On the Experimental Determination of Damping of Metals and Calculation of Thermal Stresses in Solidifying Shells

Åberg, Jonas January 2006 (has links)
This thesis explores experimentally and theoretically two different aspects of the properties and behaviour of metals: their ability to damp noise and their susceptibility to crack when solidifying. The first part concerns intrinsic material damping, and is motivated by increased demands from society for reductions in noise emissions. It is a material’s inherent ability to reduce its vibration level, and hence noise emission, and transform its kinetic energy into a temperature increase. To design new materials with increased intrinsic material damping, we need to be able to measure it. In this thesis, different methods for measurement of the intrinsic damping have been considered: one using Fourier analysis has been experimentally evaluated, and another using a specimen in uniaxial tension to measure the phase-lag between stress and strain has been improved. Finally, after discarding these methods, a new method has been developed. The new method measures the damping properties during compression using differential calorimetry. A specimen is subjected to a cyclic uniaxial stress to give a prescribed energy input. The difference in temperature between a specimen under stress and a non-stressed reference sample is measured. The experiments are performed in an insulated vacuum container to reduce convective losses. The rate of temperature change, together with the energy input, is used as a measure of the intrinsic material damping in the specimen. The results show a difference in intrinsic material damping, and the way in which it is influenced by the internal structure is discussed. The second part of the thesis examines hot cracks in solidifying shells. Most metals have a brittle region starting in the two-phase temperature range during solidification and for some alloys this region extends as far as hundreds of degrees below the solidus temperature. To calculate the risk of hot cracking, one needs, besides knowledge of the solidifying material’s ability to withstand stress, knowledge of the casting process to be able to calculate the thermal history of the solidification, and from this calculate the stress. In this work, experimental methods to measure and evaluate the energy transfer from the solidifying melt have been developed. The evaluated data has been used as a boundary condition to numerically calculate the solidification process and the evolving stress in the solidifying shell. A solidification model has been implemented using a fixed-domain methodology in a commercial finite element code, Comsol Multiphysics. A new solidification model using an arbitrary Lagrange Eulerian (ALE) formulation has also been implemented to solve the solidification problem for pure metals. This new model explicitly tracks the movement of the liquid/solid interface and is much more effective than the first model. / QC 20100929
252

Fatigue Strength of Friction Stir Welded Joints in Aluminium

Ericsson, Mats January 2005 (has links)
Solid state Friction stir welding (FSW) is of major interest in the welding of aluminium since it improves the joint properties. Many applications where Al-alloys are used are subject to varying load conditions, making fatigue failure a critical issue. In the scope of this thesis, the fatigue performance of friction stir welded AlMgSi-alloy 6082 has been investigated. Static and dynamic properties of different joint configurations and welds produced with varying process parameters have been determined. Microstructures of fractured surfaces have been studied to evaluate the effect of weld discontinuities on fatigue. The mechanical strength of the friction stir welds was set in relation to that of conventional fusion welds, and that of other FS welded Al-alloys. The friction stir process produced aluminium butt welds with high and consistent fatigue strengths, which exceeded the strengths of similar fusion welded samples. A smooth weld geometry showed to be of great importance for the fatigue performance, favouring the friction stir welds. Welding speed in a tested range of 0.35-1.4 m/min had only a modest influence on the properties of the friction stir welds; properties were not deteriorating at the highest speed. The softening of the alloy around the weldline was modelled. A fair description of the hardness profiles across the weld was obtained. At a low and high welding speed a full and partial softening respectively was predicted, indicating that full softening is not required to obtain a flawless weld. In case of friction stir overlap welds, tool design is even more important than in butt welding to secure weld quality. A broad tool shoulder with a concave pin end gave the best performance. In particular, the minimal influence on the sheet interface when welding with such a tool was beneficial for the fatigue strength. The stress distribution in overlap and T-type test specimens has been modelled. The stress intensity factors were determined. The corresponding crack propagation rates were in fair accordance with the experimental results. It was found that a simplified approach, developed to estimate ∆K for overlap spot welds, could be used also for friction stir overlap joints. / QC 20101008
253

Properties of Ugandan minerals and fireclay refractories

Kirabira, John Baptist January 2005 (has links)
Development of products which can be produced from a country’s natural resources is very important as far as the industrialization of a nation and saving foreign exchange is concerned. Presently, industries in Uganda and the other states in the Lake Victoria region import all refractory-related-consumables, as the demand cannot be met locally. Based on the abundance of ceramic raw materials for high temperature applications in the region and the demand for refractories by industries it is pertinent to develop and manufacture firebricks by exploiting the locally available raw materials. This thesis thus, concerns the characterisation of ceramic raw mineral powders from the Lake Victoria region, more particularly, Uganda, with the aim of developing firebrick refractories from the minerals. Two main deposits of kaolin and a ball clay deposit were investigated to assess their potential in the manufacture of refractory bricks. Raw- and processed sample powders were investigated by means of X-ray diffraction (XRD), thermal analysis (DTA-TG) and Scanning Electron Microscopy (SEM). In addition, the chemical composition, particle size distribution, density, and surface area of the powders were determined. A comprehensive study on beneficiation of Mutaka kaolin was carried out using mechanical segregation of particles. The aim of the study was to explore other potential applications like in paper filling and coating. The beneficiation process improves the chemical composition of kaolin to almost pure, the major impurity being iron oxide. A general production process scheme for manufacturing fireclay bricks starting with raw powder minerals (Mutaka kaolin and Mukono ball clay) was used to make six groups of sample fireclay brick. Experimental results from the characterization of formulated sample bricks indeed revealed the viability of manufacturing fireclay bricks from the raw minerals. Based on these results, industrial samples were formulated and manufactured at Höganäs Bjuf AB, Sweden. Kaolin from the Mutaka deposit was used as the main source of alumina while ball clay from Mukono was the main plasticizer and binder material. The formulated green body was consolidated by wet pressing and fired at 1350°C in a tunnel kiln. Characterization of the sintered articles was done by X-ray diffraction, scanning electron microscopy, and chemical composition (ICP-AES). In addition, technological properties related to thermal conductivity, thermal shock, alkali resistance, water absorption, porosity, shrinkage, permanent linear change (PLC), linear thermal expansion, refractoriness under load (RUL), and cold crushing strength were determined. The properties of the articles manufactured from the selected naturally occurring raw minerals reveal that the produced articles compare favourably with those of parallel types. Thus, the raw materials can be exploited for industrial production. / QC 20101029
254

Microstructures for Chemical Analysis : Design, Fabrication and Characterisation

Svedberg, Malin January 2005 (has links)
The interest for miniaturisation in chemical and biological analysis has increased in recent years. In this work, the design, fabrication and characterisation of tools for microanalysis have been studied. The focus is set on polymer microchips for applications in chemical analysis. The work consists of three parts: design and fabrication of paraffin microactuators, design and fabrication of polymer microchips as interfaces in electrospray ionisation mass spectrometry (ESI-MS), and characterisation of conducting films for fused silica capillaries as interfaces in ESI-MS. The principle of the paraffin actuators is based on the volume increase resulting from paraffin melting. Paraffin expansion is utilised to cause membrane deflection. The first plastic microactuator using paraffin as the actuator material was successfully demonstrated. The microchips as interfaces in ESI-MS have been designed with the objective that the interface should be as much a part of the microchip as possible, and as to as large extent as possible, be fabricated in the same step as the microchannels. Sheathless electrospray from microchips was demonstrated for the first time. In addition a simplified fabrication process for ESI-MS interfaces in poly(dimethyl siloxane) (PDMS) was developed. The degradation of conductive coatings for sheathless ESI-MS on fused silica capillaries was studied. It was shown that electrochemical experiments could successfully be used to simulate the electrospray conditions and predict the failure of different gold coatings. It was concluded that a common issue in the fabrication of thermoplastic microchips is the crucial sealing of microchannels and cavities. From this point of view, PDMS is a more advantageous material in microfluidics.
255

Electronic Structure and Statistical Methods Applied to Nanomagnetism, Diluted Magnetic Semiconductors and Spintronics

Bergqvist, Lars January 2005 (has links)
This thesis is divided in three parts. In the first part, a study of materials aimed for spintronics applications is presented. More specifically, calculations of the critical temperature in diluted magnetic semiconductors (DMS) and half-metallic ferromagnets are presented using a combination of electronic structure and statistical methods. It is shown that disorder and randomness of the magnetic atoms in DMS materials play a very important role in the determination of the critical temperature. The second part treats materials in reduced dimensions. Studies of multilayer and trilayer systems are presented. A theoretical model that incorporates interdiffusion in a multilayer is developed that gives better agreement with experimental observations. Using Monte Carlo simulations, the observed magnetic properties in the trilayer system Ni/Cu/Co at finite temperatures are qualitatively reproduced. In the third part, electronic structure calculations of complex Mn-based compounds displaying noncollinear magnetism are presented. The calculations reproduce with high accuracy the observed magnetic properties in these compounds. Furthermore, a model based on the electronic structure of the necessary conditions for noncollinear magnetism is presented.
256

Optimization of the Chemical Analysis SS-EN-GJL-250 Using Casting Simulation Software

Kasap, Yücel January 2011 (has links)
The main purpose of the thesis work is based on achieving same mechanical properties on the three different sized bearing housings. The key mechanical property that had to be focused on was the hardness of the parts. In order to achieve this goal, chemical compositions of the parts have studied. However there were some limitations on the composition variants. Allowed variables of the compositions are silicon, nickel and copper. Due to necessity another element, Molybdenum (Mo), was also introduced. After many simulations three different compositions are proposed. Then the feasibility of results of casting simulation software investigated. And finally an optimization guideline has proposed. Chemical composition researches have carried on casting simulation software, which is called Magma5. Following the completion of the simulations phase, proposed compositions trial casted at the company. Subsequent to trial castings cast parts had tested for their hardness values. In order to bring the thesis to completion simulation outputs and trial test results had compared. With the help of a casting simulation software composition optimisation of different sized parts could be easily optimised in order to achieve same results. Many simulations are executed with different composition for the silicon, nickel, copper and molybdenum variants. It was seen that Mo additions significantly increase the mechanical properties of the parts. Nickel and copperacts similarly on the hardness values, however nickel addition reduce undercooling tendency at a greater rate. Good inoculation is vital for the parts with thin sections. Decent inoculation helps to improve the microstructure and helps to get closer results tothe simulated values. However software represents key information aboutundercooled zones on the part. Software ensures 95% to 97% correct values on hardness results.
257

A study of solid and liquid inclusion separation at the steel-slag interface

Strandh, Jenny January 2005 (has links)
<p>This thesis work aimed to provide a better knowledge of inclusion behavior at the steel-slag interface. All results are based on mathematical modeling of liquid and solid inclusion separation to the slag. The model descriptions of the inclusion transfer are based on the equation of motion at the system. It is assumed that the inclusion transfer is governed by four forces acting on the inclusion as it has reached the steel-slag interface. These are the buoyancy force, the added mass force, the drag force and the rebound force. The models assume two cases of inclusion separation depending on the inclusion Reynolds number. In the case where Reynolds number is larger or equal to unity, Re≥1, a steel film is formed between the inclusion and the slag. This steel film must first be drained before the inclusion can separate to the slag. If Reynolds number, Re<1, then no steel film is formed and the inclusion will be in direct contact with the slag. The mathematical models also propose three types of inclusion behavior as the inclusion crosses the steel-slag interface. The inclusion can either, pass and separate to the slag, oscillate at the interface with the possibility of reentering the steel bath with the steel flow or it can remain at the interface not completely separated to the slag. A parameter study for 20 μm inclusions showed that the most important parameters controlling the inclusion behavior at the steel-slag interface are the slag viscosity and the interfacial tensions between the phases. For 100μm inclusions also the inclusion density affects the inclusion behavior. The models were applied to ladle and tundish conditions. Since the slags in the chosen industrial conditions have not been studied experimentally before, estimations of the important physical property parameters were made. Future measurements will therefore be needed in order to make predictions of inclusion transfer behavior at the steel-slag interface which are more relevant for the industry. The main conclusion is that useful plots can be made in order to illustrate the tendency for the inclusion transfer and how to manipulate the physical property parameters in order to increase the inclusion separation in ladles and tundishes.</p>
258

A study on molten steel/slag/refractory reactions during ladle steel refining

Jansson, Sune January 2005 (has links)
No description available.
259

Friction stir welding of copper canisters for nuclear waste

Källgren, Therese January 2005 (has links)
<p>The Swedish model for final disposal of nuclear fuel waste is based on copper canisters as a corrosion barrier with an inner pressure holding insert of cast iron. One of the methods to seal the copper canister is to use the Friction Stir Welding (FSW), a method invented by The Welding Institute (TWI).</p><p>This work has been focused on characterisation of the FSW joints, and modelling of the process, both analytically and numerically. The first simulations were based on Rosenthal’s analytical medium plate model. The model is simple to use, but has limitations. Finite element models were developed, initially with a two-dimensional geometry. Due to the requirements of describing both the heat flow and the tool movement, three-dimensional models were developed. These models take into account heat transfer, material flow, and continuum mechanics. The geometries of the models are based on the simulation experiments carried out at TWI and at Swedish Nuclear Fuel Waste and Management Co (SKB). Temperature distribution, material flow and their effects on the thermal expansion were predicted for a full-scale canister and lid. The steady state solutions have been compared with temperature measurements, showing good agreement.</p><p>Microstructure and hardness profiles have been investigated by optical microscope, Scanning Electron Microscope (SEM), Electron Back Scatter Diffraction (EBSD) and Rockwell hardness measurements. EBSD visualisation has been used to determine the grain size distribution and the appearance of twins and misorientation within grains. The orientation maps show a fine uniform equiaxed grain structure. The root of the weld exhibits the smallest grains and many annealing twins. This may be due to deformation after recrystallisation. The appearance of the nugget and the grain size depends on the position of the weld. A large difference can be seen both in hardness and grain size between the start of the weld and when the steady state is reached.</p>
260

Study of the slag-metal interaction in ladle treatment

Dayal, Pranesh January 2005 (has links)
No description available.

Page generated in 0.0765 seconds