Spelling suggestions: "subject:"temperatura zero"" "subject:"temperatura pero""
1 |
Otimização Ergódica, Limites À Temperatura Zero e a Álgebra Max-PlusSantos, Bruno César Conceição dos 16 April 2015 (has links)
Submitted by Marcos Samuel (msamjunior@gmail.com) on 2016-06-07T13:27:47Z
No. of bitstreams: 1
Dissertaçao Bruno Cesar.pdf: 764734 bytes, checksum: 3d0b35f72432678a4559b8ce350db5db (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T16:51:44Z (GMT) No. of bitstreams: 1
Dissertaçao Bruno Cesar.pdf: 764734 bytes, checksum: 3d0b35f72432678a4559b8ce350db5db (MD5) / Made available in DSpace on 2016-06-13T16:51:44Z (GMT). No. of bitstreams: 1
Dissertaçao Bruno Cesar.pdf: 764734 bytes, checksum: 3d0b35f72432678a4559b8ce350db5db (MD5) / Neste trabalho, vamos considerar uma função contínua definida em um espaço compacto Ω, o Princípio Variacional nos diz que ${\cal{P}}(A) . Considerando agora, em vez de , com , analisaremos o que acontece com . Faremos relações entre e medidas que realizam , onde é uma medida invariante e usaremos a álgebra Max-Plus como ferramenta para estudar o comportamento do
|
2 |
Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing / On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.Cubides, Victor Andres Vargas 16 October 2015 (has links)
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial ƒ com pressão de Gurevic finita e variação limitada (ƒ) < ∞, existe um único estado de equilíbrio µtƒ para cada t > 1, e a família (µtƒ)t>1 tem um ponto de acumulação quando t > ∞. Além disso se também supomos que o ƒ é um potencial de Markov, demonstramos que a família de estados de equilíbrio (µtƒ)t>1 converge quando t > ∞. Finalmente demonstramos a continuidade em ∞ da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs. / The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential ƒ with finite topological pressure Gurevic and bounded variation (ƒ) < ∞, there exists an equilibrium state µtƒ tf for each t > 1 and the family of equilibrium states (µtƒ)t>1 associated to each potential tf has an accumulation point at t > ∞. Moreover if we also assume that ƒ is a Markov potential we prove that the equilibrium states family (µtƒ)t>1 converges when t > ∞. Finally we prove the continuity at ∞ of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
|
3 |
Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing / On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.Victor Andres Vargas Cubides 16 October 2015 (has links)
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial ƒ com pressão de Gurevic finita e variação limitada (ƒ) < ∞, existe um único estado de equilíbrio µtƒ para cada t > 1, e a família (µtƒ)t>1 tem um ponto de acumulação quando t > ∞. Além disso se também supomos que o ƒ é um potencial de Markov, demonstramos que a família de estados de equilíbrio (µtƒ)t>1 converge quando t > ∞. Finalmente demonstramos a continuidade em ∞ da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs. / The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential ƒ with finite topological pressure Gurevic and bounded variation (ƒ) < ∞, there exists an equilibrium state µtƒ tf for each t > 1 and the family of equilibrium states (µtƒ)t>1 associated to each potential tf has an accumulation point at t > ∞. Moreover if we also assume that ƒ is a Markov potential we prove that the equilibrium states family (µtƒ)t>1 converges when t > ∞. Finally we prove the continuity at ∞ of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
|
Page generated in 0.0508 seconds