• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advances on the pyroresistive behaviour of conductive polymer composite

Asare, Eric Kwame Anokye January 2017 (has links)
The positive temperature coefficient (PTC) effect in conductive polymer composites (CPC) are still poorly understood with the thermal expansion of the polymer matrix accepted as the main cause. This thesis aims to study a model system able to explain the effect of the filler size and shape on the PTC behaviour of CPCs. Silver coated glass spheres and flakes are used as conductive fillers due to the ease in controlling uniform size and shape. In a controlled system it was demonstrated that the PTC intensity increases with increasing filler size and with decreasing filler content, both for conductive fillers. Combinations of different conductive fillers were investigated to explore the possibility to obtain both low percolation thresholds and high PTC intensities. Model systems in which at least one of the two conductive fillers is of relatively homogenous size and shape were used to facilitate unravelling some of the complicated relationships between (mixed) conductive fillers and the PTC effect. The PTC intensity of mixed fillers composites were dominated by the filler with the lowest PTC intensity, even at very low volume fractions. The PTC intensity was not only influenced by the conductive particle size but also by its size distribution. The effect of difference in linear coefficient of thermal expansion (CTE) of conductive fillers and polymer matrix based on a change in filler core on PTC behaviour was investigated. Damage to the particles due to the poor adhesion between the silver coating and the PMMA bead lead to the composite behaving like mixed filler composite. Hybrid polymers filled with silver coated glass flakes was also examined in order to enhance the PTC intensity. The PTC intensity of the composite increased with increasing PPE content but the negative temperature coefficient (NTC) effect was observed in all the composites.
2

Electrical characterization of ZnO and metal ZnO contacts

Mtangi, Wilbert 11 February 2010 (has links)
The electrical properties of ZnO and contacts to ZnO have been investigated using different techniques. Temperature dependent Hall (TDH) effect measurements have been used to characterize the as-received melt grown ZnO samples in the 20 – 330 K temperature range. The effect of argon annealing on hydrogen peroxide treated ZnO samples has been investigated in the 200 – 800oC temperature range by the TDH effect measurement technique. The experimental data has been analysed by fitting a theoretical model written in Matlab to the data. Donor concentrations and acceptor concentrations together with the associated energy levels have been extracted by fitting the models to the experimentally obtained carrier concentration data by assuming a multi-donor and single charged acceptor in solving the charge balance equation. TDH measurements have revealed the dominance of surface conduction in melt grown ZnO in the 20 – 40 K temperature range. Surface conduction effects have proved to increase with the increase in annealing temperature. Surface donor volume concentrations have been determined in the 200 – 800oC by use of theory developed by D. C. Look. Good rectifying Schottky contacts have been fabricated on ZnO after treating the samples with boiling hydrogen peroxide. Electrical properties of these Schottky contacts have been investigated using current-voltage (IV) and capacitance-voltage (CV) measurements in the 60 – 300 K temperature range. The Schottky contacts have revealed the dominance of predominantly thermionic emission at room temperature and the existence of other current transport mechanisms at temperatures below room temperature. Polarity effects on the Schottky contacts deposited on the O-polar and Zn-polar faces of ZnO have been demonstrated by the IV technique on the Pd and Au Schottky contacts at room temperature. Results obtained indicate a strong dependence of the Schottky contact quality on the polarity of the samples at room temperature. The quality of the Schottky contacts have also indicated their dependence on the type of metal used with the Pd producing contacts with the better quality as compared to the Au. Schottky barrier heights determined using temperature dependent IV measurements have been observed to increase with increasing temperature and this has been explained as an effect of barrier inhomogeneities, while the ones obtained from CV measurements have proved to follow the negative temperature coefficient of the II – VI semiconductor material, i.e. a decrease in barrier height with increasing temperature. However, the values have proved to be larger than the energy gap of ZnO, an effect that has been explained as caused by an inversion layer. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Physics / unrestricted
3

Reactivity Coefficients In A Thorium Oxide Fuelled, Heavy Water Moderated And Cooled Reactor (Part A); Validity of Bragg Stopping Cross-Section Additivity Rule For SiC (Part B)

Ghoniem, Nasr. M. 08 1900 (has links)
<p> Part A Abstract </p> <p> Temperature coefficients of reactivity for an 37-element reference design of a thorium oxide fuelled, heavy water moderated and cooled reactor, are calculated. The physical processes which determine magnitude and sign of the coefficients are identified and discussed. Results are given for fresh fuel containing equilibrium concentrations of the fission product Xe-135 and with boron control in the moderator. Results are. also -given for fresh fuel with the equilibrium concentration of Xe-135 but without boron contorl for fuel with an exposue of 1.513 n/k barn and for fuel with an exposure of 3.13 n/k barn; each containing appropriate concentrations of 50 separate nuclides and one-pseudo fission product. The fuel temperature coefficient of reactivity is negative for all the cases studied, while the coolant temperature coefficient of reactivity is positive for all the cases studied. The void effect is an increase in reactivity for all cases studied. </p> ////////////////////// <p> Part B Abstract </p> <p> This work has been done with the purpose of studying the validity of Bragg Kleeman rule which states that for combinations of elements, the atomic stopping cross-sections are additive. The validity of Bragg Kleeman rule for low energy He ions has not been conclusively tested for solids. In this work, the comparison with the experimental stopping power of SiC with the additive stopping powers of Si and C has been made experimentally. </p> <p> A thick target technique in the experimental evaluation of the stopping powers is used. This method has some simplicity over the thin target techniques. </p> <p> A calibration of the McMaster University Van-de Graff accelerator was done. Experiments were conducted later using the calibration curves produced. </p> <p> The report contains a brief account on different sources of errors due to the Van-de-Graff accelerator calibration and due to stopping power experiments. </p> / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0837 seconds