• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cobalt Germanide Contacts: Growth Reaction, Phases, and Electrical Properties / Cobalt Germanide Contacts

Rabie, Mohamed January 2019 (has links)
This thesis is a sandwich thesis composed of three papers that are published in refereed journals or conferences. The first paper is a systematic experimental study conducted to identify the first phase to form during cobalt germanidation. Hexagonal β-Co5Ge3 was the first phase to form at temperatures as low as 227°C followed by monoclinic CoGe as the second phase at the same temperature. We also report for the first time that both phases that formed were highly ordered partial epitaxial crystal orientations suggesting that both of those low-temperature phases could potentially serve as high quality contacts for germanium based devices with a very low thermal budget which is advantageous for the process design. Those results contributed to a better understanding of cobalt germanidation leading to the first multiphase technology computer aided design model presented in the second paper. This kinetic model for cobalt germanide growth can predict the resulting phase based on anneal time, temperature, and ambient. The model has been calibrated to experimental results. This predictive model can help in the design of cobalt germanide contacts with low resistance and can serve as a general modeling framework for multiphase solid state reaction binary systems. A comprehensive survey of the experimental results for formation of cobalt germanides is discussed and the data are reconciled in the third paper. Factors affecting the resulting phases and their quality are identified and some optimum choices for the experimental parameters are pointed based on the survey. The role of germanium crystal orientation in ohmic and Schottky properties of the contact is analyzed. Fermi level pinning plays a role mainly on metal/(100) n-type Ge interfaces and its role is minimal on p-type Ge and other crystalline orientations. Schottky Barrier Heights for cobalt germanide contacts reported in the literature are surveyed. Crystalline cobalt germanides, forming when Co is deposited at high temperatures, are expected to have lower interface resistivities compared to those reported. The work is important because contact resistance has become one of the most important factors in advanced complementary metal oxide semiconductor (CMOS) technology and advanced devices already include germanium (Ge) in the source/drain regions of devices. It is also important because heating at the interface due to contact resistance is one of the key challenges in power devices and cobalt germanide can be used both for Si and Ge based devices as well as for gallium nitride (GaN) devices. The latter application is possible because cobalt germanide is lattice-matched to GaN. / Thesis / Doctor of Philosophy (PhD) / The main goal of this thesis is to create predictive empirical, mathematical, and physical models to help the designer of the semiconductor process technology to design high quality electric contacts, namely cobalt germanides, to their semiconductor devices, germanium based. The choice of cobalt germanides is motivated by their expected superior quality given the possibility of growing them in crystalline form. We settled a theoretical and experimental controversy regarding the first phase to form by conducting experiments demonstrating that low-temperature forming cobalt germanide phases are highly ordered and could serve as high quality contacts. A predictive physical based mathematical model was developed to assist the designer in obtaining the desired cobalt germanide phase for its needed electrical properties by design. Factors affecting the quality of the germanide were identified based on an extensive survey and the optimum choices for the parameters to obtain high quality contact were pointed.
2

Cathodoluminescence spectroscopy studies of aluminum gallium nitride and silicon device structures as a function of irradiation and processing

White, Brad D. 15 March 2006 (has links)
No description available.
3

Etude de puits quantiques semiconducteurs par microscopie et spectroscopie à effet tunnel

Perraud, Simon 07 December 2007 (has links) (PDF)
Des puits quantiques à base d'hétérostructures In0.53 Ga0.47 As/In0.52 Al0.48 As, fabriqués par épitaxie par jets moléculaires sur substrats InP(111)A, sont étudiés par microscopie et spectroscopie à effet tunnel à basse température et sous ultra-vide. La première partie est consacrée à une étude de la surface épitaxiée (111)A de In0.53 Ga0.47 As de type n. Il est découvert que le niveau de Fermi de surface est positionné dans la bande de conduction, à proximité du niveau de Fermi de volume, et peut être partiellement contrôlé en variant la concentration d'impuretés de type n dans le volume. Ce résultat est confirmé en déterminant la relation de dispersion de la bande de conduction en surface. Un tel dépiégeage partiel du niveau de Fermi de surface indique que la densité d'états de surface accepteurs est faible. Il est proposé que ces états proviennent de défauts ponctuels natifs localisés à la surface. La deuxième partie, basée sur les résultats obtenus dans la première partie, est consacrée à une étude de puits quantiques In0.53 Ga0.47 As de surface, déposés sur des barrières In0.52 Al0.48 As selon la direction (111)A. Les mesures sont conduites sur la surface épitaxiée (111)A du puits quantique In0.53 Ga0.47 As, de manière à pouvoir sonder à l'échelle du nanomètre la distribution de densité locale d'états électroniques dans le plan du puits quantique. Il est confirmé que des sous-bandes électroniques sont formées dans le puits quantique, et que la concentration d'électrons dans le puits peut être contrôlée du fait du dépiégeage partiel du niveau de Fermi de surface. Il est découvert qu'un phénomène de percolation d'états localisés survient dans la queue de chaque sous-bande, ce qui indique la présence d'un potentiel désordonné dans le puits quantique. Les seuils de percolation sont déterminés en utilisant un modèle semi-classique. L'origine du potentiel désordonné est attribuée à une distribution aléatoire des défauts ponctuels natifs à la surface du puits quantique. Il est également découvert qu'un état lié apparaît au bas de chaque sous-bande à proximité d'un défaut ponctuel natif de type donneur. L'énergie de liaison et le rayon de Bohr des états liés peuvent être directement déterminés. De plus, il est démontré que l'énergie de liaison et le rayon de Bohr sont fonctions de l'épaisseur du puits quantique, en accord quantitatif avec des calculs variationnels d'impuretés dans le modèle de l'atome d'hydrogène.
4

Density functional simulations of defect behavior in oxides for applications in MOSFET and resistive memory

Li, Hongfei January 2018 (has links)
Defects in the functional oxides play an important role in electronic devices like metal oxide semiconductor field effect transistors (MOSFETs) and resistive random-access memories (ReRAMs). The continuous scaling of CMOS has brought the Si MOSFET to its physical technology limit and the replacement of Si channel with Ge channel is required. However, the performance of Ge MOSFETs suffers from Ge/oxide interface quality and reliability problems, which originates from the charge traps and defect states in the oxide or at the Ge/oxide interface. The sub-oxide layers composed of GeII states at the Ge/GeO2 interface seems unavoidable with normal passivation methods like hydrogen treatment, which has poor electrical properties and is related to the reliability problem. On the other hand, ReRAM works by formation and rupture of O vacancy conducting filaments, while how this process happens in atomic scale remains unclear. In this thesis, density functional theory is applied to investigate the defect behaviours in oxides to address existing issues in these electronic devices. In chapter 3, the amorphous atomic structure of doped GeO2 and Ge/GeO2 interface networks are investigated to explain the improved MOSFET reliability observed in experiments. The reliability improvement has been attributed to the passivation of valence alternation pair (VAP) type O deficiency defects by doped rare earth metals. In chapter 4, the oxidation mechanism of GeO2 is investigated by transition state simulation of the intrinsic defect diffusion in the network. It is proposed that GeO2 is oxidized from the Ge substrate through lattice O interstitial diffusion, which is different from SiO2 which is oxidized by O2 molecule diffusion. This new mechanism fully explains the strange isotope tracer experimental results in the literature. In chapter 5, the Fermi level pinning effect is explored for metal semiconductor electrical contacts in Ge MOSFETs. It is found that germanides show much weaker Fermi level pinning than normal metal on top of Ge, which is well explained by the interfacial dangling bond states. These results are important to tune Schottky barrier heights (SBHs) for n-type contacts on Ge for use on Ge high mobility substrates in future CMOS devices. In chapter 6, we investigate the surface and subsurface O vacancy defects in three kinds of stable TiO2 surfaces. The low formation energy under O poor conditions and the +2 charge state being the most stable O vacancy are beneficial to the formation and rupture of conducting filament in ReRAM, which makes TiO2 a good candidate for ReRAM materials. In chapter 7, we investigate hydrogen behaviour in amorphous ZnO. It is found that hydrogen exists as hydrogen pairs trapped at oxygen vacancies and forms Zn-H bonds. This is different from that in c-ZnO, where H acts as shallow donors. The O vacancy/2H complex defect has got defect states in the lower gap region, which is proposed to be the origin of the negative bias light induced stress instability.
5

Piezoelectric generators based on semiconducting nanowires : simulation and experiments / Générateurs piézoélectrique à base de nanofils semi-conducteurs : simulations et études expérimentales

Tao, Ran 31 January 2017 (has links)
L’alimentation en énergie des réseaux de capteurs miniaturisés pose une question fondamentale, dans la mesure où leur autonomie est un critère de qualité de plus en plus important pour l’utilisateur. C’est même une question cruciale lorsque ces réseaux visent à assurer une surveillance d’infrastructure (avionique, machines, bâtiments…) ou une surveillance médicale ou environnementale. Les matériaux piézoélectriques permettent d’exploiter l’énergie mécanique inutilisée présente en abondance dans l’environnement (vibrations, déformations liées à des mouvements ou à des flux d’air…). Ils peuvent ainsi contribuer à rendre ces capteurs autonomes en énergie. Sous la forme de nanofils (NF), les matériaux piézoélectriques offrent une sensibilité qui permet d’exploiter des sollicitations mécaniques très faibles. Ils sont également intégrables, éventuellement sur substrat souple.Dans cette thèse nous nous intéressons au potentiel des nanofils de matériaux semi-conducteurs piézoélectriques, tels que ZnO ou les composés III-V, pour la conversion d’énergie mécanique en énergie électrique. Depuis peu, ceux-ci ont fait l’objet d’études relativement nombreuses, avec la réalisation de nanogénérateurs (NG) prometteurs. De nombreuses questions subsistent toutefois avec, par exemple, des contradictions notables entre prédictions théoriques et observations expérimentales.Notre objectif est d’approfondir la compréhension des mécanismes physiques qui définissent la réponse piézoélectrique des NF semi-conducteurs et des NG associés. Le travail expérimental s’appuie sur la fabrication de générateurs de type VING (Vertical Integrated Nano Generators) et sur leur caractérisation. Pour cela, un système de caractérisation électromécanique a été construit pour évaluer les performances des NG réalisés et les effets thermiques sous une force compressive contrôlée. Le module d’Young et les coefficients piézoélectriques effectifs de NF de GaN; GaAs et ZnO et de NF à structure cœur/coquille à base de ZnO ont été évalués également dans un microscope à force atomique (AFM). Les nanofils de ZnO sont obtenus par croissance chimique en milieu liquide sur des substrats rigides (Si) ou flexibles (inox) puis sont intégrés pour former un générateur. La conception du dispositif VING s’est appuyée sur des simulations négligeant l’influence des porteurs libres, comme dans la plupart des études publiées. Nous avons ensuite approfondi le travail théorique en simulant le couplage complet entre les effets mécaniques, piézoélectriques et semi-conducteurs, et en tenant compte cette fois des porteurs libres. La prise en compte du piégeage du niveau de Fermi en surface nous permet de réconcilier observations théoriques et expérimentales. Nous proposons notamment une explication au fait que des effets de taille apparaissent expérimentalement pour des diamètres au moins 10 fois plus grands que les valeurs prévues par simulation ab-initio ou au fait que la réponse du VING est dissymétrique selon que le substrat sur lequel il est intégré est en flexion convexe ou concave. / Energy autonomy in small sensors networks is one of the key quality parameter for end-users. It’s even critical when addressing applications in structures health monitoring (avionics, machines, building…), or in medical or environmental monitoring applications. Piezoelectric materials make it possible to exploit the otherwise wasted mechanical energy which is abundant in our environment (e. g. from vibrations, deformations related to movements or air fluxes). Thus, they can contribute to the energy autonomy of those small sensors. In the form of nanowires (NWs), piezoelectric materials offer a high sensibility allowing very small mechanical deformations to be exploited. They are also easy to integrate, even on flexible substrates.In this PhD thesis, we studied the potential of semiconducting piezoelectric NWs, of ZnO or III-V compounds, for the conversion from mechanical to electrical energy. An increasing number of publications have recently bloomed about these nanostructures and promising nanogenerators (NGs) have been reported. However, many questions are still open with, for instance, contradictions that remain between theoretical predictions and experimental observations.Our objective is to better understand the physical mechanisms which rule the piezoelectric response of semiconducting NWs and of the associated NGs. The experimental work was based on the fabrication of VING (Vertical Integrated Nano Generators) devices and their characterization. An electromechanical characterization set-up was built to evaluate the performance and thermal effects of the fabricated NGs under controlled compressive forces. Atomic Force Microscopy (AFM) was also used to evaluate the Young modulus and the effective piezoelectric coefficients of GaN, GaAs and ZnO NWs, as well as of ZnO-based core/shell NWs. Among them, ZnO NWs were grown using chemical bath deposition over rigid (Si) or flexible (stainless steel) substrates and further integrated to build VING piezoelectric generators. The VING design was based on simulations which neglected the effect of free carriers, as done in most publications to date. This theoretical work was further improved by considering the complete coupling between mechanical, piezoelectric and semiconducting effects, including free carriers. By taking into account the surface Fermi level pinning, we were able to reconcile theoretical and experimental observations. In particular, we propose an explanation to the fact that size effects are experimentally observed for NWs with diameters 10 times higher than expected from ab-initio simulations, or the fact that VING response is non-symmetrical according to whether the substrate on which it is integrated is actuated with a convex or concave bending.
6

Electrical characterization of ZnO and metal ZnO contacts

Mtangi, Wilbert 11 February 2010 (has links)
The electrical properties of ZnO and contacts to ZnO have been investigated using different techniques. Temperature dependent Hall (TDH) effect measurements have been used to characterize the as-received melt grown ZnO samples in the 20 – 330 K temperature range. The effect of argon annealing on hydrogen peroxide treated ZnO samples has been investigated in the 200 – 800oC temperature range by the TDH effect measurement technique. The experimental data has been analysed by fitting a theoretical model written in Matlab to the data. Donor concentrations and acceptor concentrations together with the associated energy levels have been extracted by fitting the models to the experimentally obtained carrier concentration data by assuming a multi-donor and single charged acceptor in solving the charge balance equation. TDH measurements have revealed the dominance of surface conduction in melt grown ZnO in the 20 – 40 K temperature range. Surface conduction effects have proved to increase with the increase in annealing temperature. Surface donor volume concentrations have been determined in the 200 – 800oC by use of theory developed by D. C. Look. Good rectifying Schottky contacts have been fabricated on ZnO after treating the samples with boiling hydrogen peroxide. Electrical properties of these Schottky contacts have been investigated using current-voltage (IV) and capacitance-voltage (CV) measurements in the 60 – 300 K temperature range. The Schottky contacts have revealed the dominance of predominantly thermionic emission at room temperature and the existence of other current transport mechanisms at temperatures below room temperature. Polarity effects on the Schottky contacts deposited on the O-polar and Zn-polar faces of ZnO have been demonstrated by the IV technique on the Pd and Au Schottky contacts at room temperature. Results obtained indicate a strong dependence of the Schottky contact quality on the polarity of the samples at room temperature. The quality of the Schottky contacts have also indicated their dependence on the type of metal used with the Pd producing contacts with the better quality as compared to the Au. Schottky barrier heights determined using temperature dependent IV measurements have been observed to increase with increasing temperature and this has been explained as an effect of barrier inhomogeneities, while the ones obtained from CV measurements have proved to follow the negative temperature coefficient of the II – VI semiconductor material, i.e. a decrease in barrier height with increasing temperature. However, the values have proved to be larger than the energy gap of ZnO, an effect that has been explained as caused by an inversion layer. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Physics / unrestricted

Page generated in 0.1067 seconds