• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 92
  • 92
  • 13
  • 11
  • 11
  • 10
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A study of thermographic phosphor thermometry in an operating turbofan engine

Andersen, Ted Thanning 13 February 2009 (has links)
A new method of remote thermometry utilizing the temperature dependent optical properties of thermographic phosphors was evaluated for use in measuring high-pressure turbine blade metal temperatures in an operating turbofan engine test rig. Thermographic phosphors, ceramics doped with a rare earth metal, were bonded to the turbine blades. These phosphors exhibit fluorescence when optically excited by a laser, and both the intensity and the rate of decay of the fluorescence are temperature dependent An optical fiber probe was used to carry the excitation laser light to the blade surface, and to receive the resulting fluorescence. The blades rotated at speeds up to 30,000 rpm. Synchronization was achieved by a digital pattern recognition circuit, capable of locating a specific blade with each revolution. The investigation concentrated on thennographic phosphor characteristics, phosphor binding methods, and probe optical efficiency. Although poor performance of the selected phosphor binding methods impeded the location of the fluorescence signal in the operating gas turbine engine, many operating characteristics of the technique were determined, and the new measurement technique was established as a promising candidate for further research in the temperature measurement of rotating surfaces inside a turbine engine. / Master of Science
72

Temperature Dependence of Current Transport in Metal-SWNT Structures

Daine, Robert John January 2015 (has links)
No description available.
73

Novel Magnetic Resonance Fingerprinting (MRF) Methods and Applications

Qian, Enlin January 2024 (has links)
Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and enables structural, functional, and metabolic imaging of the human body. One primary clinical application of MRI is the neuroimaging of tumors, which demands both multi-parametric qualitative and quantitative information from MR scans. Although the role of the quantitative MRI (qMRI) is well accepted, it suffers from long acquisition times leading to patient discomfort, especially in geriatric and pediatric patients. Quantitative imaging is also critical to estimating temperature during MR scans of patients with implants and leads. The radiofrequency stimulus pulses of an MRI exam can couple to conductive implants, resulting in eddy current propagation and consequential heating. The heating can lead to third-degree burn lesions along the surfaces of titanium joints, deep brain stimulation (DBS), and pacemaker leads. Such challenges raise safety concerns in MRI, requiring fast and accurate temperature estimations to ensure patients’ safety. This thesis aims to tackle the abovementioned challenges in MRI, specifically focusing on developing novel quantitative imaging approaches using magnetic resonance fingerprinting (MRF) methods and applications. MRF is a framework that allows measuring multiple tissue properties in a single acquisition. In the first chapter, we extend the current implementation of MRF and introduce tailored MRF (TMRF), an imaging method offering qualitative and quantitative information simultaneously, with promising results in differentiating healthy and pathological tissues. This method increases scanner efficiency and decreases acquisition time for neuroimaging while simultaneously providing qualitative and quantitative imaging measures. We demonstrate these advances in in vitro phantoms healthy volunteers- and pediatric patient- populations. In the second chapter, we address the issue of MRI safety for patients with conductive implants like deep brain stimulation (DBS) leads by using MRF-based thermometry (MRFT) to accurately predict and monitor temperature near these implants during MRI scans, enhancing safety and efficacy for image-guided procedures and imaging patients with such implants. Successful approaches will be incorporated into an imaging protocol to increase safety and effectiveness for image-guided lead placement and imaging patients with implanted leads. To validate MRFT in vivo in patients, we conducted a patient study using MRFT to evaluate the accuracy of MRFT in vivo near DBS lead. In the third section, we implement an open-source MRF package (OMEGA) for a multi-site, multi-field strength MRF repeatability study, demonstrating its accuracy and repeatability of MRF across various conditions.
74

Termodiagnostika - dotykové a bezdotykové měření teploty / Thermodiagnostics – contact and contact-free temperature measurements

Mikula, Martin January 2014 (has links)
This thesis is concerned with thermodiagnostics in industrial practise, which is very important for the assessment of technical condition of object on the basis of temperature, in today's time. It includes summary of contact and contact-free methods and their principle, advantages and disadvantages for aplication in industrial practise. Because of thesis it was carried out measurement in company Daikin Device Czech republic with the use of contact thermometer and two available thermocameras for solving of topical tasks relating to production.
75

Combustor Exhaust Temperature Nonuniformity Sensing Using Diode Laser Absorption

Palaghita, Tudor I. 12 February 2007 (has links)
This thesis describes the development of a sensing technique for temperature nonuniformity along the line of sight through combustion exhaust, geared for gas turbine applications. Tunable diode laser absorption spectroscopy is used to measure three absorption lines and compute a variable to characterize the level of temperature nonuniformity along the laser path. Nonuniformity information is obtained from one line of sight sensor because the absorption has a nonlinear dependence on temperature. This dependence is analyzed to determine the behaviour, shape, and response of absorption lines measured through mediums with nonuniform temperature profiles. Based on this analysis a new line selection process for nonuniformity sensing is developed. A sensor for temperature nonuniformity is proposed and demonstrated through computer simulations and experiments in the exhaust of a laboratory-scale combustor. The nonuniformity variable, U, is shown to monotonically track the level of temperature nonuniformity along the laser path. The capabilities of this sensing technique are determined based on a comprehensive analysis of errors and their effect on sensor performance. Methods to mitigate these errors are described, and the overall sensor capability is determined based on the characteristics of state of the art diode laser and absorption sensor technology. Such a sensor is capable of measuring minimum temperature deviations of 17% or more, which is well within the needed capabilities for industrial applications. Furthermore, the results and knowledge presented in this thesis apply to other absorption based sensing techniques.
76

Microscale optical thermometry techniques for measuring liquid phase and wall surface temperatures

Kim, Myeongsub 22 December 2010 (has links)
Thermal management challenges for microelectronics are a major issue for future integrated circuits, thanks to the continued exponential growth in component density described by Moore¡¯s Law. Current projections from the International Technology Roadmap for Semiconductors predict that local heat fluxes will exceed 1 kW/cm2 within a decade. There is thus an urgent need to develop new compact, high heat flux forced-liquid and evaporative cooling technologies. Thermometry techniques that can measure temperature fields with micron-scale resolution without disturbing the flow of coolant would be valuable in developing and evaluating new thermal management technologies. Specifically, the ability to estimate local convective heat transfer coefficients, which are proportional to the difference between the bulk coolant and wall surface temperatures, would be useful in developing computationally efficient reduced-order models of thermal transport in microscale heat exchangers. The objective of this doctoral thesis is therefore to develop and evaluate non-intrusive optical thermometry techniques to measure wall surface and bulk liquid temperatures with O(1-10 micronmeter) spatial resolution. Intensity-based fluorescence thermometry (FT), where the temperature distribution of an aqueous fluorescent dye solution is estimated from variations in the fluorescent emission intensity, was used to measure temperatures in steady Poiseuille flow at Reynolds numbers less than 10. The flow was driven through 1 mm square channels heated on one side to create temperature gradients exceeding 8 ¡ÆC/mm along both dimensions of the channel cross-section. In the evanescent-wave fluorescence thermometry (EFT) experiments, a solution of fluorescein was illuminated by evanescent waves to estimate the solution temperature within about 300 nm of the wall. In the dual-tracer FT (DFT) studies, a solution of two fluorophores with opposite temperature sensitivities was volumetrically illuminated over most of the `cross-section of the channel to determine solution temperatures in the bulk flow. The accuracy of both types of FT is determined by comparing the temperature data with numerical predictions obtained with commercial computational fluid dynamics software. The results indicate that EFT can measure wall surface temperatures with an average accuracy of about 0.3 ¡ÆC at a spatial resolution of 10 micronmeter, and that DFT can measure bulk water temperature fields with an average accuracy of about 0.3 ¡ÆC at a spatial resolution of 50 micronmeter in the image plane. The results also suggest that the spatial resolution of the DFT data along the optical axis (i.e., normal to the image plane) is at least an order of magnitude greater than the depth of focus of the imaging system.
77

Investigations of fiber optic temperature sensors based on Yb:Y3Al5O12

Kennedy, Jermaine L 01 June 2006 (has links)
This dissertation presents the development of temperature sensors which employ a fiber-optic probe consisting of single crystal YB3BAlB5BOB12B (YAG) fiber with a phosphor of short length grown directly onto one end using the laser heated pedestal growth method. The response of all the crystalline temperature sensors derives from the temperature-dependent decay time of fluorescence. Yb3+P ions served as the fluorescer, while the addition of various rare-earth codopants (i.e., NdP3+ and ErP3+) with YbP3+ provided an additional path in the form of phonon assisted energy transfer. With the additional nonradiative decay path, the temperature sensors exhibited a more desirable response. A thermally compensated fluorescence decay rate fiber optic temperature sensor was demonstrated for the first time experimentally to the best of our knowledge to make accurate surface temperature measurements. Overall, this novel technique is envisioned to aid in the perpetual challenge of precise surface temperature measurements in comparison to current methods, with the emphasis in the area of rapid thermal processing of semiconductors.
78

Experimental and theoretical assessment of Through-Silicon Vias for 3D integrated microelectronic packages

Liu, Xi 13 January 2014 (has links)
With continued push toward 3D integrated packaging, Through-Silicon Vias (TSVs) play an increasingly important role in interconnecting stacked silicon dies. Although progress is being made in the fabrication of TSVs, experimental and theoretical assessment of their thermomechanical reliability is still in infancy. This work explores the thermomechanical reliability of TSVs through numerical models and innovative experimental characterization techniques. Starting with free-standing wafers, this work examines failure mechanisms such as Si and SiO₂ cohesive cracking as well as SiO₂/Cu interfacial cracking. Such cohesive crack propagation and interfacial crack propagation are studied using fracture mechanics finite-element modeling, and the energy available for crack propagation is determined through crack extension using the proposed centered finite-difference approach (CFDA). In parallel to the simulations, silicon wafers with TSVs are designed and fabricated and subjected to thermal shock test. Cross-sectional SEM failure analysis is carried out to study cohesive and interfacial crack initiation and propagation under thermal excursions. In addition, local micro-strain fields under thermal excursions are mapped through synchrotron X-ray diffraction. To understand the 3D to 2D strain measurement data projection process, a new data interpretation method based on beam intensity averaging is proposed and validated with measurements. Building upon the work on free-standing wafers, this research studies the package assembly issues and failure mechanisms in multi-die stacks. Comprehensive design-of-simulations study is carried out to assess the effect of various material and geometry parameters on the reliability of 3D microelectronic packages. Through experimentally-measured strain fields, thermal cycling tests, and simulations, design guidelines are developed to enhance the thermomechanical reliability of TSVs used in future 3D microelectronic packages.
79

Étude thermodynamique de la formation d'hydrates en absence d'eau liquide : mesures et modélisation / Thermodynamic studies of gas hydrate formation in the absence of liquid water : measurements and modelling

Youssef, Ziad 12 October 2009 (has links)
Dans les applications industrielles et lors des opérations de transport du gaz naturel, la présence d'eau sous forme liquide ou en phase vapeur peut entraîner la formation d'hydrates provoquant le colmatage des unités industrielles et des lignes de conduites et il est indispensable de définir précisément les seuils de déshydratation à réaliser, afin d'éviter la formation d'hydrates. Cela est réalisé à l'aide d'un modèle thermodynamique qui prédit la stabilité des hydrates, en fonction de la température, de la pression et de la composition du gaz.Les modèles thermodynamiques classiques, développés uniquement sur la base de données expérimentales de formation d'hydrates en présence d'eau liquide, surestiment fortement la température de dissociation des hydrates en l'absence d'une phase aqueuse.Dans le but de définir un modèle thermodynamique capable de représenter convenablement les équilibres de phases vapeur-hydrate et prédire ainsi la température de dissociation des hydrates que l'on soit en présence ou en l'absence d'eau liquide, nous avons mis au point une méthodologie originale pour la détermination de la température de dissociation des hydrates de corps purs et de mélanges en l'absence d'eau liquide. Cette méthodologie, basée sur le suivi de la teneur en eau de phase vapeur, en fonction de la température par coulométrie Karl Fischer, a permis la détermination de la température de dissociation de plusieurs hydrates simples et mixtes à des teneurs en eau et pressions différentes ainsi que les quantités d'hydrates formées dans ces conditions.Sur la base de ces nouvelles données, nous avons défini un modèle thermodynamique basé sur l'utilisation de l'approche de Dharmawardhana pour le calcul de la fugacité de l'eau dans l'hydrate vide,le potentiel de Kihara pour le calcul de la constante de Langmuir et l'équation d'état CPA (Cubic Plus Association) pour la modélisation des phases fluides. Nous avons montré que l'utilisation de l'équation d'état CPA, capable de prendre en compte l'auto association de l'eau apporte une amélioration très significative.Le développement d'un flash biphasique hydrate-fluide nous a permis de calculer les quantités d'hydrates mixtes formées et de les comparer à nos données expérimentales. / In industrial applications and during natural gas transport, the presence of water under liquid form or within a vapour phase can lead to gas hydrate formation causing the blockage of industrial units and transport lines. Hence, in order to avoid such situation, it is very important to well determine its formation conditions. It is occurred by using a rigorous thermodynamic model. Due to the lack of data in the literature concerning gas hydrates formation in the absence of an aqueous phase,usual thermodynamic models predict correctly gas hydrate dissociation temperature only in the presence of aqueous water. Our purpose is to propose a thermodynamic model with hydrate phase that can predict gas hydrate dissociation temperature in both cases: with and without water liquid phase.At first, using an existing apparatus, we have developed a new experimental protocol in order tomeasure gas hydrate dissociation temperature in the absence of liquid water. It consists in measuring the water content in the vapour phase as a function of the temperature by using a Karl Fischer coulometer. We have measured the dissociation temperature of many simple and mixture hydrates.We have also developed a thermodynamic model that is able to predict correctly gas hydrate dissociation temperature, in the absence and in the presence of liquid water. This model is based onthe use of Dharmawardhana's approach for the calculation of hydrate fugacity in the empty hypothetical hydrate, Kihara potential for the calculation of the Langmuir constant and CPA EoS forfluid phases modelling. We have shown that the use of CPA EoS improves the prediction of gas hydrate dissociation temperature. We have also developed a biphasic flash (hydrate-fluid) allowing the calculation of the formed mixture hydrate amounts. The calculated amounts are in agreement with the experimental ones.
80

Near-Wall Thermometry via Total Internal Reflection Fluorescence Micro-Thermometry (TIR-FMT)

Suda-Cederquist, Keith David 26 March 2007 (has links)
To effectively design systems of microchannels it is necessary for scientists and engineers to understand thermal transport characteristics of microchannels. To experimentally determine the convective heat transfer coefficient of microchannels it is necessary to measure both the bulk and surface temperature fields. This investigation aims to develop a technique, named Total Internal Reflection Fluorescent Micro-Thermometry (TIR-FMT), to measure the temperature of water within several hundred nanometers of a wall--effectively, the surface temperature of the wall. In TIR-FMT, an evanescent-wave is generated in the water near the wall. The intensity of this evanescent-wave decays exponentially with distance from the wall. A fluorophore if illuminated by the evanescent-wave can absorb a photon. Excited fluorophores subsequently emit red-shifted photons, which are called fluorescence. The probability of a fluorescent emission is temperature-dependent. Therefore, by monitoring the intensity of the fluorescence a correlation can be made to the temperature of the region of illumination. Using the TIR-FMT technique the temperature dependence of the fluorescence intensity from buffered fluorescein (pH=9.2) was determined to be 1.35%/C. TIR-FMT can be used to measure the temperature of a fluorophore solution within 600 nm of a wall across a temperature range of 12.5-55C. The average uncertainties (95% confidence) of the temperature measured was determined to be 2.3C and 1.5C for a single 1.5x1.5 and #956;m pixel and the entire 715x950 and #956;m viewfield. By spatial averaging, average uncertainties of 2.0C and 1.8C were attained with spatial resolutions of 16x16 and 100x100 and #956;m, respectively.

Page generated in 0.0767 seconds