• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 50
  • 35
  • 34
  • 23
  • 19
  • 16
  • 9
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 556
  • 84
  • 73
  • 72
  • 43
  • 43
  • 42
  • 40
  • 37
  • 35
  • 33
  • 32
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Brandmal-Erkennung zur Detektion beschädigter Glaskappenisolatoren an Hochspannungsfreileitungen

Junghanns, Nico 23 September 2020 (has links)
Für den zuverlässigen Betrieb von Hochspannungsfreileistungen ist es notwendig, die an ihnen eingesetzten Isolatoren regelmäßig zu überprüfen. Somit können gravierendere Beschädigungen vorgebeugt werden. Für diese Überprüfung sind verschiedene Verfahren geeignet. Die Brandmalerkennung ist dabei noch ein relativ neues Verfahren. Mit ihrer Hilfe ist es jedoch möglich auch kleinste Beschädigungen zu erkennen. Im Rahmen dieser Bachelorarbeit wird ein neues Verfahren zur Erkennung von Brandmalen vorgestellt. Dieses verwendet einen Template-Matching-Algorithmus zum Finden der Isolatoren. Dessen Erkennungsrate liegt bei 90,18 %. Alle damit gefundenen Isolatoren untersucht man nach Brandmalen. Diese werden segmentiert und durch ein Connected-Component-Labeling lokalisiert. Insgesamt konnten 71,05% der Brandmale erkannt werden. So wurde der Zustand von 88,19% der Isolatoren korrekt bestimmt.
52

Accelerating SEM Depth Map Building with the GPU

Brown, Nathan D. 09 March 2010 (has links)
No description available.
53

Facial Feature Extraction Using Deformable Templates

Serce, Hakan 01 December 2003 (has links) (PDF)
The purpose of this study is to develop an automatic facial feature extraction system, which is able to identify the detailed shape of eyes, eyebrows and mouth from facial images. The developed system not only extracts the location information of the features, but also estimates the parameters pertaining the contours and parts of the features using parametric deformable templates approach. In order to extract facial features, deformable models for each of eye, eyebrow, and mouth are developed. The development steps of the geometry, imaging model and matching algorithms, and energy functions for each of these templates are presented in detail, along with the important implementation issues. In addition, an eigenfaces based multi-scale face detection algorithm which incorporates standard facial proportions is implemented, so that when a face is detected the rough search regions for the facial features are readily available. The developed system is tested on JAFFE (Japanese Females Facial Expression Database), Yale Faces, and ORL (Olivetti Research Laboratory) face image databases. The performance of each deformable templates, and the face detection algorithm are discussed separately.
54

VIRAL RNA ELEMENTS AND HOST GENES AFFECTING RNA RECOMBINATION IN TOMBUSVIRUSES

Cheng, Chi-Ping 01 January 2005 (has links)
RNA recombination is a major factor driving viral evolution and contributing to new disease outbreaks. Therefore, understanding the mechanism of RNA recombination can help scientists to develop longer lasting antiviral strategies. Tombusviruses are one of the best model RNA viruses to study RNA virus recombination. My goals were to dissect the mechanism of tombusviral RNA recombination. To do so, in my thesis, I describe my results on the roles of (i) the viral replicase and the viral RNA templates; and (ii) the effect of host factors on tombusvirus recombination events. To study the mechanism of RNA recombination without the influence of selection pressure on the emerging recombinants, we developed an in vitro RNA recombination assay based on viral RNA templates and purified viral replicase preparations. Using this in vitro assay, we demonstrated that replicase driven template switching is the mechanism of recombination, whereas RNA ligation seems less likely to be a major mechanism. In addition, we also studied the role of RNA substrates, in more detail. Our results showed that viral replicase preferred to use functional RNA domains in the acceptor RNAs over random switching events. Host factors may also play important roles in RNA recombination. Using yeast as a model system for studying replication and recombination of a tombusvirus replicon, we identified 9 host genes affecting tombusvirus RNA recombination. Separate deletion of five of these genes enhanced generation of novel viral RNA recombinants. Further studies on one of these genes, XRN1, a 5-3 exoribonuclease, indicated that it might be involved in degradation of tombusvirus RNAs. Lack of Xrn1p resulted in accumulation of truncated (partially degraded) replicon RNAs, which became good templates for RNA recombination. To further study Xrn1p, we overexpressed Xrn4p of Arabidopsis thaliana, a functional analogue of the yeast Xrn1p, in Nicotiana benthamiana plants. After superinfecting the Xrn4p-overexpressing N. benthamiana with tombusvirus, truncated tombusvirus genomic and subgenomic RNA1 were observed. Some of the identified tombusvirus variants were infectious in protoplasts and could systemically infected N. benthamiana plants. Overall, this is the first report that a single host gene can affect rapid viral evolution and RNA recombination.
55

Computer-Assisted Mosaic Arthroplasty: A Femur Model Trial

Sebastyan, Stephen 29 November 2013 (has links)
Computer assisted mosaic arthroplasty (CAMA) is a surgical technique that transplants cylindrical osteochondral grafts to repair damaged cartilage. An earlier in vivo study on sheep showed that short-term clinical outcomes are improved with the use of computer assistance, as compared to the conventional technique. This thesis reports on a study comparing three mosaic arthroplasty techniques -- one conventional and two computer assisted -- on human anatomy. This in vitro study used solid foam femur models modified to incorporate simulated cartilage defects. There were five participating surgeons ranging from a third year resident to a senior orthopedic surgeon. Each of the five participating surgeons performed a total of nine trials. There were three distinct sets of identical solid foam femur models with simulated cartilage defects. Three surgical techniques (conventional, opto-electronic, and patient-specific template) were performed on each. Several measures were made to compare surgical techniques: operative time; surface congruency; defect coverage; graft surface area either too high or too low; air volume below the grafts; and distance and angle of the grafts from the surgical plan. The patient-specific template and opto-electronic techniques resulted in improved surface congruency, defect surface coverage, graft surface within 0.50mm recessed and 0.25mm proud of the original surface, and below-graft air gap volume in comparison to the conventional technique. However, the conventional technique had a shorter operative time. The patient-specific template technique had less variance in surface congruency and shorter operative time than did the opto-electronic technique. / Thesis (Master, Computing) -- Queen's University, 2013-11-28 17:06:06.961
56

Robust Face Detection Using Template Matching Algorithm

Faizi, Amir 24 February 2009 (has links)
Human face detection and recognition techniques play an important role in applica- tions like face recognition, video surveillance, human computer interface and face image databases. Using color information in images is one of the various possible techniques used for face detection. The novel technique used in this project was the combination of various techniques such as skin color detection, template matching, gradient face de- tection to achieve high accuracy of face detection in frontal faces. The objective in this work was to determine the best rotation angle to achieve optimal detection. Also eye and mouse template matching have been put to test for feature detection.
57

Biasing positional change in interlocked and non-interlocked molecular machines

Barrell, Michael Jack January 2010 (has links)
This Thesis explores the topic of large amplitude motion within molecular machines and the different mechanisms and molecular architectures that are exploited in order to achieve control over the relative positions of submolecular components with respect to one another. Chapter One provides a thorough survey of a vast range of molecular switches and machines that have been developed during the last two decades. The focus is on interlocked and non-interlocked systems that display highly controlled large amplitude motion and the principles that govern their operation. Initially, simple molecular switches and shuttles are described with the chapter finally arriving at complex molecular machines such as motors, ratchets and walking molecules. The importance of understanding the different mechanisms that dictate the operation of switchable molecular machines and their fundamental differences are highlighted throughout the chapter. Chapters Two to Four are devoted to reporting the author’s contributions to novel switchable molecular systems. Chapter Two describes the serendipitous discovery of an ion-pair template which has been exploited in rotaxane formation and the operation of an orthogonal interaction anion-switchable molecular shuttle. The macrocycle moves back and forth along the thread between a cationic pyridinium station and a metal coordinating triazole motif when chloride anions are bound and removed respectively from a palladium centre which is located inside the cavity of the macrocycle. Excellent positional integrity (>98%) of the ring at both stations is achieved due to the orthogonal binding modes in the two states of the shuttle. Chapter Three presents a non-interlocked molecular switch that operates through the manipulation of dynamic covalent chemistry. The switch is comprised of a “two legged”, small organic molecule (a “walking unit”), anchored to a three foothold track via one disulfide and one hydrazone bond. The acid promoted hydrazone exchange allows a specific ratio of the two positional isomers to be achieved at equilibrium. However, the system is also arranged in such a manner that the ratio can be biased towards one positional isomer when the hydrazone exchange is carried out alongside the photoisomerisation (Z  E) of a stilbene motif which is incorporated in the track. The isomerisation alters the relative free energies of the products by increasing the ring strain of one positional isomer with respect to the other, hence introducing bias into the system. The final chapter reports the logical progression of the work presented in Chapter Three and describes the pursuit of a four-station dynamic covalent energy ratchet, of which the net position of the walker unit can be driven away from a steady state, minimum energy distribution by orthogonal disulfide and hydrazone exchange and concomitant stilbene isomerisation. The endeavour towards the successful synthesis of this rather complex molecule is described alongside the principles for its proposed operation. Chapter Two is presented in the form of an article that has already been published in a peer-reviewed journal. No attempt has been made to rewrite this work other than a slight alteration in the order of figures in the text to allow for easier reading and re-formatting to ensure consistency of presentation throughout this thesis. The original paper is reproduced, in its published format in the Appendix. Chapters Two, Three and Four begin with a synopsis to provide a general overview of the work that is presented in addition to a grateful acknowledgement of the contribution of my fellow researchers.
58

Markerless Lung Tumor Trajectory Estimation from Rotating Cone Beam Computed Tomography Projections

Chen, Shufei 01 January 2016 (has links)
Respiration introduces large tumor motion in the thoracic region which influences treatment outcome for lung cancer patients. Tumor motion management techniques require characterization of temporal tumor motions because tumor motion varies patient to patient, day to day and cycle to cycle. This work develops a markerless algorithm to estimate 3 dimensional (3D) lung-tumor trajectories on free breathing cone beam computed tomography (CBCT) projections, which are 2 dimensional (2D) sequential images rotating about an axis and are used to reconstruct 3D CBCT images. A gold standard tumor trajectory is required to guide the algorithm development and estimate the tumor detection accuracy for markerless tracking algorithms. However, a sufficient strategy to validate markerless tracking algorithms is lacking. A validation framework is developed based on fiducial markers. Markers are segmented and marker trajectories are xiv obtained. The displacement of the tumor to the marker is calculated and added to the segmented marker trajectory to generate reference tumor trajectory. Markerless tumor trajectory estimation (MLTM) algorithm is developed and improved to acquire tumor trajectory with clinical acceptable accuracy for locally advanced lung tumors. The development is separate into two parts. The first part considers none tumor deformation. It investigates shape and appearance of the template, moreover, a constraint method is introduced to narrow down the template matching searching region for more precise matching results. The second part is to accommodate tumor deformation near the end of the treatment. The accuracy of MLTM is calculated and compared against 4D CBCT, which is the current standard of care. In summary, a validation framework based on fiducial markers is successfully built. MLTM is successfully developed with or without the consideration of tumor deformation with promising accuracy. MLTM outperforms 4D CBCT in temporal tumor trajectory estimation.
59

Fabrication of bovine serum albumin nanotubes through template assisted layer by layer assembly

Zhang, Dawei 06 May 2009 (has links)
One-dimensional nanostructures have offered unique advantages in many fields. Protein based nanotubes, in particular, are desirable for biomedical applications due to their ease of functionlization and intrinsic biocompatibility. Template-assisted methods are widely used to fabricate cylindrical nanostructures like carbon nanotubes, metal nanowires, polymer nanorods, etc. In the fabrication of protein nanostructures, the layer by layer (LbL) technique has long been applied to deposit protein multilayers on planar and spherical substrates. The success in each area led to the conclusion that the combination of these two techniques will potentially bring us the capability of fabricating protein nanotubes in a more controllable fashion. In this work, protein nanotubes have been successfully deposited inside nanoscopic pores by sequential filtration of bovine serum albumin (BSA) solution at pH 3.8 and pH 7.0 through the channels in the anodic aluminum oxide (AAO) template. The morphologies of the obtained nanostructures have been examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also, a simple analysis from UV/Vis spectroscopy has shown that the solutions used in our experiment will not significantly damage the bioactivity of BSA. Our future work will focus on strengthening the mechanical stability of the protein nanotubes and controlling their morphology more precisely.
60

Isolating post-amplification genomic DNA for recursive analysis of low-template DNA samples

Krause, Chelsea Rae 12 March 2016 (has links)
Low-template deoxyribonucleic acid (DNA) samples are commonly found within forensic biological evidence. Low amounts of DNA become increasingly difficult to analyze as the allelic peaks become less distinguishable from instrumental noise. Forensic laboratories currently try to increase allele signal intensity through additional polymerase chain reaction (PCR) cycles or enhancing capillary electrophoresis injection times or potentials. Purification of the post-PCR product may also be conducted as PCR reagents can compete with DNA fragments during electrokinetic injection. Though these strategies have proven useful, resulting in a higher signal to noise ratio, low-template samples continue to exhibit allele drop-out due to the stochastic variation induced by the forensic DNA laboratory process. Further complicating analysis is the fact that low-template DNA samples are often exhausted as the full amount is needed for analysis. Thus, PCR can be considered a destructive technique. Since allele drop-out is hypothesized to be the result of 1) insufficient levels of amplicons and 2) sampling effects, it is desirable to obtain the original DNA template after amplification for future analysis. This would minimize the impact of 1) above. Thus, a novel method which isolates genomic DNA after PCR amplification has been developed. Amplification products were produced using biotinylated primers and cleaned from the solution with streptavidin-coated magnetic beads. Filtration was then used to remove remaining PCR reagents and primers. The result is a recovered sample containing the original genomic DNA. Re-amplification was then performed showing the method is successful. Although the method is capable of re-amplifying isolated DNA after PCR, there are points within the procedure that need to be optimized. For example, significant amounts of DNA are lost during the cleaning process and there is a high retention of the original amplified product. This study describes the optimization steps taken to reduce DNA loss, specifically through the filtration step. When method optimization is complete, low-template DNA samples could be analyzed recursively without being destroyed during PCR.

Page generated in 0.0384 seconds