• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Temporal Encoder-Decoder Approach to Extracting Blood Volume Pulse Signal Morphology from Face Videos

Li, Fulan 05 July 2023 (has links)
This thesis considers methods for extracting blood volume pulse (BVP) representations from video of the human face. Whereas most previous systems have been concerned with estimating vital signs such as average heart rate, this thesis addresses the more difficult problem of recovering BVP signal morphology. We present a new approach that is inspired by temporal encoder-decoder architectures that have been used for audio signal separation. As input, this system accepts a temporal sequence of RGB (red, green, blue) values that have been spatially averaged over a small portion of the face. The output of the system is a temporal sequence that approximates a BVP signal. In order to reduce noise in the recovered signal, a separate processing step extracts individual pulses and performs normalization and outlier removal. After these steps, individual pulse shapes have been extracted that are sufficiently distinct to support biometric authentication. Our findings demonstrate the effectiveness of our approach in extracting BVP signal morphology from facial videos, which presents exciting opportunities for further research in this area. The source code is available at https://github.com/Adleof/CVPM-2023-Temporal-Encoder-Decoder-iPPG / Master of Science / This thesis considers methods for extracting blood volume pulse (BVP) representations from video of the human face. We present a new approach that is inspired by the method that has been used for audio signal separation. The output of our system is an approximation of the BVP signal of the person in the video. Our method can extract a signal that is sufficiently distinct to support biometric authentication. Our findings demonstrate the effectiveness of our approach in extracting BVP signal morphology from facial videos, which presents exciting opportunities for further research in this area.
2

Human Path Prediction Using Auto Encoder LSTMs and Single Temporal Encoders

Hudgins, Hayden 01 January 2020 (has links) (PDF)
Due to automation, the world is changing at a rapid pace. Autonomous agents have become more common over the last several years and, as a result, have created a need for improved software to back them up. The most important aspect of this greater software is path prediction, as robots need to be able to decide where to move in the future. In order to accomplish this, a robot must know how to avoid humans, putting frame prediction at the core of many modern day solutions. A popular way to solve this complex problem of frame prediction is Auto Encoder LSTMs. Though there are many implementations of this, at its core, it is a neural network comprised of a series of time sensitive processing blocks that shrink and then grow the data’s dimensions to make a prediction. The idea of using Auto Encoder styled networks to do frame prediction has also been adapted by others to make Temporal Encoders. These neural networks work much like traditional Auto Encoders, in which the data is reduced then expanded back up. These networks attempt to tease out a series of frames, including a predictive frame of the future. The problem with many of these networks is that they take an immense amount of computation power, and time to get them performing at an acceptable level. This thesis presents possible ways of pre-processing input frames to these networks in order to gain performance, in the best case seeing a 360x improvement in accuracy compared to the original models. This thesis also extends the work done with Temporal Encoders to create more precise prediction models, which showed consistent improvements of at least 50% for some metrics. All of the generated models were compared using a simulated data set collected from recordings of ground level viewpoints from Cities: Skylines. These predicted frames were then analyzed using a common perceptual distance metric, that is, Minkowski distance, as well as a custom metric that tracked distinct areas in frames. All of the following was run on a constrained system in order to see the effects of the changes as they pertain to systems with limited hardware access.
3

Design and Optimization of Temporal Encoders using Integrate-and-Fire and Leaky Integrate-and-Fire Neurons

Anderson, Juliet Graciela 05 October 2022 (has links)
As Moore's law nears its limit, a new form of signal processing is needed. Neuromorphic computing has used inspiration from biology to produce a new form of signal processing by mimicking biological neural networks using electrical components. Neuromorphic computing requires less signal preprocessing than digital systems since it can encode signals directly using analog temporal encoders from Spiking Neural Networks (SNNs). These encoders receive an analog signal as an input and generate a spike or spike trains as their output. The proposed temporal encoders use latency and Inter-Spike Interval (ISI) encoding and are expected to produce a highly sensitive hardware implementation of time encoding to preprocess signals for dynamic neural processors. Two ISI and two latency encoders were designed using Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons and optimized to produce low area designs. The IF and LIF neurons were designed using the Global Foundries 180nm CMOS process and achieved an area of 186µm2 and 182µm2, respectively. All four encoders have a sampling frequency of 50kHz. The latency encoders achieved an average energy consumption per spike of 277nJ and 316pJ for the IF-based and LIF-based latency encoders, respectively. The ISI encoders achieved an average energy consumption per spike of 1.07uJ and 901nJ for the IF-based and LIF-based ISI encoders, respectively. Power consumption is proportional to the number of neurons employed in the encoder and the potential to reduce power consumption through layout-level simulations is presented. The LIF neuron is able to use a smaller membrane capacitance to achieve similar operability as the IF neuron and consumes less area despite having more components. This demonstrates that capacitor sizes are the main limitations of a small size in spiking neurons for SNNs. An overview of the design and layout process of the two presented neurons is discussed with tips for overcoming problems encountered. The proposed designs can result in a fast neuromorphic process by employing a frequency higher than 10kHz and by providing a hardware implementation that is efficient in multiple sectors like machine learning, medical implementations, or security systems since hardware is safer from hacks. / Master of Science / As Moore's law nears its limit, a new form of signal processing is needed. Moore's law anticipated that transistor sizes will decrease exponentially as the years pass but CMOS technology is reaching physical limitations which could mean an end to Moore's prediction. Neuromorphic computing has used inspiration from biology to produce a new form of signal processing by mimicking biological neural networks using electrical components. Biological neural networks communicate through interconnected neurons that transmit signals through synapses. Neuromorphic computing uses a subdivision of Artificial Neural Networks (ANNs) called Spiking Neural Networks (SNNs) to encode input signals into voltage spikes to mimic biological neurons. Neuromorphic computing reduces the preprocessing step needed to process data in the digital domain since it can encode signals directly using analog temporal encoders from SNNs. These encoders receive an analog signal as an input and generate a spike or spike trains as their output. The proposed temporal encoders use latency and Inter-Spike Interval (ISI) encoding and are expected to produce a highly sensitive hardware implementation of time encoding to preprocess signals for dynamic neural processors. Two ISI and two latency encoders were designed using Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons and optimized to produce low area designs. All four encoders have a sampling frequency of 50kHz. The latency encoders achieved an average energy consumption per spike of 277nJ and 316pJ for the IF-based and LIF-based latency encoders, respectively. The ISI encoders achieved an average energy consumption per spike of 1.07uJ and 901nJ for the IF-based and LIF-based ISI encoders, respectively. Power consumption is proportional to the number of neurons employed in the encoder and the potential to reduce power consumption through layout-level simulations is presented. The LIF neuron is able to use a smaller membrane capacitance to achieve similar operability which consumes less area despite having more components than the IF neuron. This demonstrates that capacitor sizes are the main limitations of small size in neurons for spiking neural networks. An overview of the design and layout process of the two presented neurons is discussed with tips for overcoming problems encountered. The proposed designs can result in a fast neuromorphic process by employing a frequency higher than 10kHz and by providing a hardware implementation that is efficient in multiple sectors like machine learning, medical implementations, or security systems since hardware is safer from hacks.

Page generated in 0.0535 seconds