• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 41
  • 15
  • 14
  • 6
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 159
  • 159
  • 41
  • 31
  • 28
  • 26
  • 25
  • 21
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Použití protlačovacích zkoušek na miniaturních discích pro materiály s vyšší úrovní strukturní nehomogenity / The use of small punch tests for materials with a higher level of structural inhomogeneity

Gordiak, Michal January 2020 (has links)
Master's thesis deals with evaluating applicability of correlation relationships between material characteristics determined by Small Punch Test and standard tensile test for material AlSi7Mg0,6 manufactured by casting and technology SLM. Results of Small Punch Tests are correlated with yield strength, tensile strength, elongation, and Young's modulus of elasticity. For each material characteristic various correlation methods are compared, while for each method corresponding coefficients are determined. Consequently, the applicability of individual methods is evaluated by substituting coefficients determined by various studies. Primarily analyzed are correlation methods for which future normalization is expected. The results of master's thesis show that structural inhomogeneity caused by SLM process does not result in high inaccuracies in determining material characteristics. Larger impact on material characteristics has high porosity, which was identified in cast material and led to significant deviations in evaluating tensile strength and elongation.
32

Návrh řídicího systému pro malý zkušební stroj / Control system design for small test machine

Rasocha, David January 2020 (has links)
This thesis focuses on design of small testing machine for measuring tensile strength of materials. Appropriate hardware for driving the motor with serial communication will be used. Main drive is a stepper motor with microstepping. Instructions for motor is provided by microcontroler which will be comunicating with aplication in computer. This aplication will have all user functions nessesary for using this device.
33

Vliv povrchových úprav skleněných vláken na mechanickou odezvu GF/polyester kompozitu / The influence of surface modification of glass fibers on mechanical response of the GF/polyester composite

Janeček, Pavel January 2008 (has links)
The diploma thesis is aimed at an influence of surface modifications of fibrous reinforcements on mechanical properties at the fiber-matrix interface in fiber reinforced composites. Glass fibers were used as reinforcements and polyester resin was the matrix. The sample of composite consisted of polymer matrix in a form of cylindrical body placed on bundle of glass fibers. The design of the sample was constructed with respect to results of Finite Element Analysis (FEA). The tensile test using a materials testing machine (Zwick) was employed to evaluate adhesion at the fiber-matrix interface. Untreated glass fibers, fibers with commercial sizing, and fibers modified by deposition of plasma polymer film using Plasma-Enhanced Chemical Vapor Deposition (PECVD) at different deposition conditions were used for fabrication of composite samples. The fibers and composite samples were analyzed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM).
34

Porovnání vlastností dvou výrobků pro umělá kluziště na bázi kaučuku etylén-propylen-dien / Properties comparison of two products used for skating rink based on ehtylene-propylene-dien rubber

Kostková, Jana January 2015 (has links)
This master thesis deals with characterization of two black and white products based on ethylene-propylene-diene rubber (EPDM) used for skating rink. Products marked with A and are different in their diameter of circular tubes trough which cooling medium passes and also in the distance of these tubes. Both of materials were characterized in order to determine whether it is the EPDM and how are they different. The characterization methods were used: differential scanning calorimetry, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, tensile test, swelling test, thermooxidative test. The composition of both materials, including fillers and others additives is almost the same but difference is in structure of EPDM and probably also in interaction with fillers, what exhibits different mechanical properties, thermooxidative stability and thermal capacity. These differences which have been found are essential for long-term use properties of both materials.
35

Experimental Testing and MaterialModeling of Anisotropy in InjectionMoulded Polymer Materials

Shahid, Sharlin, Gukhool, Widaad January 2020 (has links)
Experimental characterization of the mechanical properties in a thin injection moulded Low-Density Polyethylene (LDPE) plate is per- formed in this work. Anisotropy in LDPE at different material orientations is measured from the Digital Image Correlation (DIC) observation of the specimens during uniaxial tensile test. From the test response and observation from DIC, the studied material is found to be significantly anisotropic. Finite Element simulation (FE-simulation) of in-plane anisotropy of material is carried in AbaqusTM R2020 using available models like Hill48 and Barlat2004. When necessary the simulation plastic potentials for these models are optimized against experimental yield stress ratio (R) and anisotropic ratio (r). To express the nonlinear mechanical behavior, a suitable hardening extrapolation model, namely Swift/Hockett-Sherby is selected from several extrapolation models based on experimental data. To validate the experimental methods, simulation methods and material characterization process, finite element simulation results such as force displacement, strain distribution and different anisotropic related properties are compared with the experimental data. Finally, advantages and disadvantages of different simulation models are discussed.
36

Molecular Dynamics Simulations of the Size-dependent Brittle-to-ductile Transition of Silicon Nanowires

Xu, Wenting January 2020 (has links)
No description available.
37

Analysis of Linear Friction Welding of Dissimilar Metals: Aluminum and Copper with Zinc Interlayer

Neupane, Sandesh 08 August 2023 (has links)
No description available.
38

Effect of infill density on mechanical and fire properties of polylactic acid composites produced by FDM 3D-printing technology

Aronsson Edström, David, Lundberg, Oskar January 2022 (has links)
3D-printing is a new and upcoming manufacturing technique that can significantly reduce time and material losses in production. Fused deposition modeling (FDM) is one of the most commonly used 3D-printing methods for processing conventional thermoplastic polymers. To reduce the printing time and usage of material via FDM technology, a user typically specifies infill density. Therefore, it is important to understand how this printing parameter affects the fire and mechanical properties of the 3D-printed object.  This study aims to investigate the effect of various infill densities on mechanical and fire properties of polylactic acid (PLA) composites produced by FDM 3D-printing technology. PLA composites of five different infill densities were 3D-printed: 20%, 40%, 60%, 80% and 100%. The samples for all tests were designed in AutoCAD and then imported into the slicing software, Ultimaker Cura. The 3D-printer used for printing was the Ultimaker S3 which uses FDM technology. To test the fire and mechanical behavior of 3D-printed PLA composites three tests were conducted: cone calorimeter test, tensile test and UL-94 flammability test. The cone calorimeter testing was done using the incident radiation of 35 kW/m2. The results showed that the trend of HHR curves of all infill densities are akin to each other, though the peak heat release rate and total heat released increases with higher infill density. Time to ignition was also longer for samples with higher infill density. Tensile testing was conducted according to the ASTM D638 standard. The results showed that with increasing infill density mechanical properties improved, with 100% infill density having the highest tensile strength (58.15 MPa) and elastic modulus (1472.1 MPa). From the UL-94 test results no difference in flammability could be observed. Every sample had no rating, which implies that PLA specimens of all infill densities are very flammable, with long afterflame and heavy flammable dripping. The study concludes that among the examined infill densities, no ideal percentage of infill density could be found. Requirements based on application will determine what infill density is most appropriate. Nevertheless, the data collected can hopefully provide a useful reference in designing and manufacturing 3D-printed PLA composites.
39

Evaluation of Woodmer/plastic composites / Evaluering av Woodmer/plast kompositmaterial

Ahlström, Leon January 2023 (has links)
Plast ger otroliga möjligheter i form av stor variation för materialanvändning. Tyvärr sker det dock på bekostnad av miljön då de ackumuleras i naturen. En kompromiss mellan hållbarhet och fortsatt plastanvändning skulle kunna vara att använda biomassa som fyllnadsmaterial i plastkompositer istället för plast. Detta skulle i sin tur minska mängden plast och öka användningen av förnybara råvaror. Naturligtvis måste de mekaniska och termiska egenskaperna också vara av acceptabel kvalitet för materialtillämpningar och helst även erbjuda någon form av uppgradering av det redan existerande materialet. Ett potentiellt fyllnadsmaterial är Woodmer, en LCC (lignin kolhydrat komplex) som produceras av Ecohelix. Woodmers förmåga att agera som ett termoplastiskt kompositmaterial analyserades och jämfördes med de respektive jungfruliga termoplasterna. Tre olika plaster används som bas för kompositerna och dessa plaster var akrylnitril-butadien-styren (ABS), polymjölksyra (PLA) och lågdensitetspolyeten (LDPE). Resultaten visar att det är möjligt att skapa homogena Woodmer/termoplast kompositmaterial. När det gäller de termiska egenskaperna, så gav inte UL 94 någon brandklassificering på materialen, några positiva effekter observerades i TGA och resultaten från DSC var mestadels oförändrade jämfört med respektive jungfrulig plast. Dragprovning visade å andra sidan att de mekaniska egenskaperna påverkas negativt av högre Woodmer tillsatser men effekten varierade kraftigt mellan de olika plasterna då LDPE var minst påverkad och PLA mest påverkad. Framtida forskning bör fokusera på att tillverka material genom dubbelskruv extrudering eftersom det tyvärr fanns problem med blandningen i enkelskruv extrudering. Ytterligare forskning kring materialens morfologi, löslighet och så vidare krävs också för att se om kompositerna är lämpliga material eller om det finns några oförutsedda problem. / Plastics provide incredible opportunities in the form of great versatility for material usage. However, this comes at the cost of environmental issues as they accumulate in the environment. Therefore a compromise between sustainability and continued plastic usage is to use biomass as a filler material in plastic composites instead of virgin plastics. This would in turn reduce the amount of plastic and increase the usage of renewable raw materials. Of course the mechanical and thermal properties must also be of acceptable quality for material applications and preferably even offer some form of improvement to the preexisting material. One potential biomass filler material is Woodmer, a LCC (lignin carbohydrate complex) produced by Ecohelix. The viability of Woodmer as a thermoplastic composite material was analysed and compared to virgin thermoplastics. Three different plastics were used as basis for the composites and these plastics were Acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA) and low density polyethylene (LDPE). The results show that it is possible to create homogenous Woodmer/thermoplastic composites. As for the thermal properties, while the UL 94 provided no flame classification on the materials some positive effects were observed in TGA and the results from the DSC were similar to the virgin plastics. The tensile test on the other hand showed that the mechanical properties were negatively affected by increasing Woodmer additions but the effect varied substantially between the different plastics as LDPE was the least affected and PLA the most affected. Future research should focus on making the materials through twin screw extrusion as there were unfortunately issues with the mixing from single screw extruders. Further research regarding the materials morphology, solubility and so forth are also required to see if the composites are suitable materials or if there are any unforeseen issues.
40

THE EFECT OF IMPURITIES IN WATER FROM LAKE ERIE ON THE ADHESIVE STRENGTH OF ICE TO WIND TURBINE MATERIALS

LEE, Tung-Ying 19 September 2011 (has links)
No description available.

Page generated in 0.075 seconds