Spelling suggestions: "subject:"tensorflow"" "subject:"tensorflows""
91 |
Rozpoznání květin v obraze / Image based flower recognitionJedlička, František January 2018 (has links)
This paper is focus on flowers recognition in an image and class classification. Theoretical part is focus on problematics of deep convolutional neural networks. The practical part if focuse on created flowers database, with which it is further worked on. The database conteins it total 13000 plant pictures of 26 spicies as cornflower, violet, gerbera, cha- momile, cornflower, liverwort, hawkweed, clover, carnation, lily of the valley, marguerite daisy, pansy, poppy, marigold, daffodil, dandelion, teasel, forget-me-not, rose, anemone, daisy, sunflower, snowdrop, ragwort, tulip and celandine. Next is in the paper described used neural network model Inception v3 for class classification. The resulting accuracy has been achieved 92%.
|
92 |
Zvýšení kvality fotografie s použitím hlubokých neuronových sítí / Superresulution of photography using deep neural networkHolub, Jiří January 2018 (has links)
This diploma thesis deals with image super-resolution with conservation of good quality. Firstly, there are described state of the art methods dealing with this problem, as well as principles of neural networks with focus on convolutional ones. Finally, there is described a few models of convolutional neural network for image super-resolution to double size, which have been trained, tested and compared on newly created database with pictures of people.
|
93 |
Zlepšování systému pro automatické hraní hry Starcraft II v prostředí PySC2 / Improving Bots Playing Starcraft II Game in PySC2 EnvironmentKrušina, Jan January 2018 (has links)
The aim of this thesis is to create an automated system for playing a real-time strategy game Starcraft II. Learning from replays via supervised learning and reinforcement learning techniques are used for improving bot's behavior. The proposed system should be capable of playing the whole game utilizing PySC2 framework for machine learning. Performance of the bot is evaluated against the built-in scripted AI in the game.
|
94 |
Implementace neuronové sítě bez operace násobení / Neural Network Implementation without MultiplicationSlouka, Lukáš January 2018 (has links)
The subject of this thesis is neural network acceleration with the goal of reducing the number of floating point multiplications. The theoretical part of the thesis surveys current trends and methods used in the field of neural network acceleration. However, the focus is on the binarization techniques which allow replacing multiplications with logical operators. The theoretical base is put into practice in two ways. First is the GPU implementation of crucial binary operators in the Tensorflow framework with a performance benchmark. Second is an application of these operators in simple image classifier. Results are certainly encouraging. Implemented operators achieve speed-up by a factor of 2.5 when compared to highly optimized cuBLAS operators. The last chapter compares accuracies achieved by binarized models and their full-precision counterparts on various architectures.
|
95 |
Odhad kanálu v OFDM systémech pomocí deep learning metod / Utilization of deep learning for channel estimation in OFDM systemsHubík, Daniel January 2019 (has links)
This paper describes a wireless communication model based on IEEE 802.11n. Typical methods for channel equalisation and estimation are described, such as the least squares method and the minimum mean square error method. Equalization based on deep learning was used as well. Coded and uncoded bit error rate was used as a performance identifier. Experiments with topology of the neural network has been performed. Programming languages such as MATLAB and Python were used in this work.
|
96 |
Zpracování dat ze senzorů wearable zařízení pomocí strojového učení / Processing Sensor Data from a Wearable Device by Machine LearningHlavačka, Martin January 2019 (has links)
The goal of this master's thesis is to analyze the situation of wearable devices with the Android Wear operating system and recognition capabilities of various movement activities using neural networks. The primary focus is therefore on identifying and describing the most appropriate tool for recognizing dynamic movements using machine learning methods based on data obtained from this type of devices. The practical part of the thesis then comments on the implementation of a stand-alone Android Wear application capable of recording and formatting data from sensors, training the neural network in a designed external desktop tool, and then reusing trained neural network for motion recognition directly on the device.
|
97 |
Generation of Synthetic Retinal Images with High Resolution / Generation of Synthetic Retinal Images with High ResolutionAubrecht, Tomáš January 2020 (has links)
K pořízení snímků sítnice, která představuje nejdůležitější část lidského oka, je potřeba speciálního vybavení, kterým je fundus kamera. Z tohoto důvodu je cílem této práce navrhnout a implementovat systém, který bude schopný generovat takovéto snímky bez použítí této kamery. Navržený systém využívá mapování vstupního černobílého snímku krevního řečiště sítnice na barevný výstupní snímek celé sítnice. Systém se skládá ze dvou neuronových sítí: generátoru, který generuje snímky sítnic, a diskriminátoru, který klasifikuje dané snímky jako reálné či syntetické. Tento systém byl natrénován na 141 snímcích z veřejně dostupných databází. Následně byla vytvořena nová databáze obsahující více než 2,800 snímků zdravých sítnic v rozlišení 1024x1024. Tato databáze může být použita jako učební pomůcka pro oční lékaře nebo může poskytovat základ pro vývoj různých aplikací pracujících se sítnicemi.
|
98 |
A Client-Server Solution for Detecting Guns in School Environment using Deep Learning TechniquesOlsson, Johan January 2019 (has links)
Att använda maskininlärning för att detektera vapen eliminerar en konstant mänsklig övervakning, vilket också kan leda till en lägre responstid till polis. I den här rapporten undersöks hur en vapendetektor kan konstrueras och byggas som en del av en klient-server-lösning. / With the progress of deep learning methods the last couple of years, object detectionrelated tasks are improving rapidly. Using object detection for detecting guns in schoolsremove the need for human supervision and hopefully reduces police response time. Thispaper investigates how a gun detection system can be built by reading frames locally andusing a server for detection. The detector is based on a pre-trained SSD model and throughtransfer learning is taught to recognize guns. The detector obtained an Average Precisionof 51.1% and the server response time for a frame of size 1920 x 1080 was 480 ms, but couldbe scaled down to 240 x 135 to reach 210 ms, without affecting the accuracy. A non-gunclass was implemented to reduce the number of false positives and on a set of 300 imagescontaining 165 guns, the number of false positives dropped from 21 to 11.
|
99 |
Topologieoptimierung mittels Deep LearningHalle, Alex, Hasse, Alexander 05 July 2019 (has links)
Die Topologieoptimierung ist die Suche einer optimalen Bauteilgeometrie in Abhängigkeit des Einsatzfalls. Für komplexe Probleme kann die Topologieoptimierung aufgrund eines hohen Detailgrades viel Zeit- und Rechenkapazität erfordern. Diese Nachteile der Topologieoptimierung sollen mittels Deep Learning reduziert werden, so dass eine Topologieoptimierung dem Konstrukteur als sekundenschnelle Hilfe dient. Das Deep Learning ist die Erweiterung künstlicher neuronaler Netzwerke, mit denen Muster oder Verhaltensregeln erlernt werden können. So soll die bislang numerisch berechnete Topologieoptimierung mit dem Deep Learning Ansatz gelöst werden. Hierzu werden Ansätze, Berechnungsschema und erste Schlussfolgerungen vorgestellt und diskutiert.
|
100 |
A Client-Server Solution for Detecting Guns in School Environment using Deep Learning TechniquesOlsson, Johan January 2019 (has links)
With the progress of deep learning methods the last couple of years, object detection related tasks are improving rapidly. Using object detection for detecting guns in schools remove the need for human supervision and hopefully reduces police response time. This paper investigates how a gun detection system can be built by reading frames locally and using a server for detection. The detector is based on a pre-trained SSD model and through transfer learning is taught to recognize guns. The detector obtained an Average Precision of 51.1% and the server response time for a frame of size 1920 x 1080 was 480 ms, but could be scaled down to 240 x 135 to reach 210 ms, without affecting the accuracy. A non-gun class was implemented to reduce the number of false positives and on a set of 300 images containing 165 guns, the number of false positives dropped from 21 to 11.
|
Page generated in 0.0452 seconds