• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation, réalisation et test de MEMS RF capacitif de puissance à base de dépôt diélectrique par ALD pour la conception de commutateur pour applications RADAR / Modeling, fabrication and testing of high power capacitive RF MEMS based on ALD dielectric materials for switch designing toward RADAR applications

Croizier, Guillaume 24 November 2017 (has links)
Les MEMS RF sont des composants clés pour le développement de nombreuses fonctions de systèmes hyperfréquences plus efficaces et plus compactes (déphaseurs, module transmission/réception, réseau d’antennes à déphasage, circuits reconfigurables, réseau d’adaptation …). Pour le développement des prochaines générations de systèmes RADAR, Thales s’intéresse notamment à l’intégration de MEMS RF capacitifs pour développer des fonctions reconfigurables pouvant supporter des puissances hyperfréquences de l’ordre de 30 W. Les travaux exposés dans ce manuscrit se sont concentrés sur l’étude de matériaux diélectriques et de techniques de dépôts pour identifier, intégrer et démontrer la viabilité de diélectriques prometteurs pour les MEMS RF capacitifs de puissance. Les aspects relatifs à la fabrication de ces composants ont également été étudiés, particulièrement l’impact de la maitrise des états de surface sur les performances, la tenue en puissance et la défaillance des dispositifs. En outre, ces travaux ont montrés qu’avec l’introduction des matériaux déposés par ALD, la tenue en puissance des MEMS RF capacitifs n’est plus limitée par le diélectrique. En intégrant ces matériaux ALD, l’architecture des dispositifs devient le facteur limitant la tenue en puissance, particulièrement l’épaisseur de la membrane et la configuration du commutateur. En perspectives, différentes architectures ont donc été développées et étudiées pour adresser ces limitations de tenue en puissance. / RF MEMS are key components to improve the efficiency and size of numerous functions of microwave systems (Phase shifter, transmission/reception module, antennas array, reconfigurable systems, impedance matching…). To develop the next generation of RADAR systems, Thales takes special interest in the integration of capacitive RF MEMS devices to demonstrate reconfigurable functions with power handling capabilities up to 30 W. The work reported in this thesis did focus on the study of dielectric materials and deposition techniques to identify, integrate and demonstrate the advantages of promising dielectrics for capacitive RF MEMS power handling. The components fabrication aspects have also been studied, especially the impact of surface state quality on performances, power handling and devices failure mechanisms. Furthermore, this work did point out that with the integration of ALD material, power handling of capacitive RF MEMS is no longer limited by the capacitance dielectric. Furthermore, with the integration of ALD material the components design become the limiting factor for power handling, particularly the membrane thickness and the switch configuration. To open new prospects, several designs have been developed and studied to address these power handling limitations.
2

Conception et caractérisation de micro-commutateurs électromécaniques hyperfréquences de puissance : application à un circuit de commutation d'émission/réception large bande

Ducarouge, Benoit 13 December 2005 (has links) (PDF)
L'introduction des technologies MEMS ("Micro Electro Mechanical Systems") dans les modules hyperfréquences répond au besoin croissant en systèmes de communications intégrables, reconfigurables et présentant d'excellentes performances électriques jusqu'aux fréquences millimétriques. Le développement de nouvelles architectures intelligentes jusque là inaccessibles aux technologies traditionnelles est également envisageable grâce à ces composants. Cela dit, la conception multi-physique de ces circuits alliant des aspects électrostatiques, mécaniques et électromagnétiques reste difficile à mettre en Suvre et complique leur optimisation. De plus, peu de recherches se sont focalisées sur la tenue en puissance de ces composants, pourtant primordiale pour envisager leur intégration dans des chaînes d'émission radio fréquences. Nos travaux de thèse ont porté sur la conception et la caractérisation de micro-interrupteurs MEMS de puissance et de circuits hyperfréquences les intégrant et opérant en bande X (10GHz). Le premier chapitre présente une méthodologie multi-physique de conception de commutateurs MEMS RF électrostatiques à contact capacitif réalisés au Laboratoire d'Analyse et d'Architecture des Systèmes. Cette méthodologie, associée à une topologie optimale de micro-commutateurs, a permis un prototypage efficace de commutateurs MEMS et a été validée expérimentalement grâce à des structures montrant d'excellentes performances hyperfréquences. Le second chapitre s'intéresse à l'optimisation en puissance de commutateurs MEMS RF. Nous avons développé une méthodologie de prédiction de la puissance maximale de fonctionnement pour ces composants. Cette méthodologie a été ensuite utilisée pour loptimisation en puissance du commutateur développé dans le chapitre 1. Un dimensionnement ainsi que lensemble des résultats de simulations sont présentés et validés expérimentalement. Enfin le dernier chapitre présente la mise en application des méthodologies décrites aux deux premi ers chapitres pour la conception d'un circuit de commutation de puissance large bande 6-18 GHz basé sur des topologies série et parallèle d'interrupteurs MEMS. Les structures ont ainsi été optimisées, fabriquées et mesurées. Elles présentent dexcellentes performances RF sur une large gamme de fréquence.
3

Optimisation technologique de commutateurs MEMS RF à tenue en puissance améliorée - Application à l'élaboration d'un synthétiseur d'impédance MEMS en bande K

Bordas, Chloe 28 February 2008 (has links) (PDF)
Les commutateurs capacitifs MEMS (MicroElectroMechanical System) RF présentent un intérêt maintenant bien connu dans le domaine des micro-ondes pour satisfaire de nombreuses applications (spatiales, automobiles, téléphonie mobile). Ils permettent de rendre reconfigurable les modules hautes fréquences sans tous les inconvénients des composants actifs (fortes pertes, isolation limitée, bruit ...). Cependant, beaucoup de problèmes restent irrésolus comme la fiabilité des diélectriques, la tenue en puissance et le rendement de fabrication. De ce fait, ils ralentissent l'industrialisation de tels composants. De fortes connaissances dans les domaines multi-physiques (micro-onde, mécanique, thermique, procédé) sont essentielles afin d'améliorer les commutateurs MEMS RF capacitifs. Des efforts ont déjà été réalisés au niveau de la topologie, de la fiabilité des diélectriques et du procédé technologique. Ce dernier n'est pas encore assez optimisé pour obtenir des structures fonctionnelles avec de meilleures performances et reproductibilité. Le sujet principal de ce travail de thèse traite de l'optimisation du procédé de fabrication des commutateurs RF capacitifs à tenue en puissance améliorée et également de leur intégration dans un synthétiseur d'impédances pour des applications en bande K. La première partie montre le procédé classique de fabrication et ses principales améliorations. Des études sur la couche sacrificielle et sur la méthode de libération ont permis d'augmenter les performances RF et le rendement technologique. De plus, de nouveaux diélectriques (fluorure de strontium et nitrure de silicium dopé par des nanotubes de carbone) ont été testés dans le but d'accroître la durée de vie des commutateurs. La relation entre la puissance appliquée et la température qu'elle génère est décrite dans le second chapitre. Des caractérisations ont été réalisées pour comprendre les comportements mécaniques sous stress, qui peut être notamment provoqué par des mesures de puissance ou par un environnement hostile. Grâce à une caméra infrarouge (IR), l'échauffement dû à la puissance a été déterminé. Des solutions ont été trouvées et étudiées pour absorber ou prévenir les déformations sous un stress thermique. Finalement, toutes ces optimisations et ces études ont été appliquées à un circuit de puissance : un tuner d'impédance, qui est composé de six commutateurs. Sa topologie, sa fabrication et ses caractérisations constitue le troisième et dernier chapitre.

Page generated in 0.0796 seconds