Spelling suggestions: "subject:"teorema espectral"" "subject:"teorema 1spectral""
1 |
Transformações lineares no plano e aplicações / Linear transformations on the plane and applicationsNogueira, Leonardo Bernardes 15 March 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T13:24:09Z
No. of bitstreams: 2
Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-23T11:17:17Z (GMT) No. of bitstreams: 2
Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-23T11:17:17Z (GMT). No. of bitstreams: 2
Nogueira, Leonardo Bernardes.pdf: 4758026 bytes, checksum: 81be665ec243b277cb285cc686730f04 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper begins with a brief history about the development of vector spaces and linear
transformations, then presents fundamental concepts for the study of Linear Algebra, with
greater focus on linear operators in the R2 space. Through examples it explores a wide
range of operators in R2 in order to show other applications of matrices in high school
and prepares the ground for the presentation a version of Spectral Theorem for selfadjoint
operators in R2, which says that for every operator self-adjoint T : E!E in finite
dimensional vector space with inner product, exists an orthonormal basis fu1; : : : ;ung E
formed by eigenvectors of T, and culminates with their applications on the study of conic
sections, quadratic forms and equations of second degree in x and y; on the study of
operators associated to quadratic forms, a version of Spectral Theorem could be called
as The Main Axis Theorem albeit this nomenclature is not used in this paper. Thereby
summarizing a study made by Lagrange in "Recherche d’arithmétique ", between 1773
and 1775, which he studied the property of numbers that are the sum of two squares.
Thus he was led to study the effects of linear transformation with integer coefficients in a
quadratic form in two variables. / Este trabalho inicia-se com um breve embasamento histórico sobre o desenvolvimento
de espaços vetoriais e transformações lineares. Em seguida, apresenta conceitos fundamentais
básicos, que formam uma linguagem mínima necessária para falar sobre Álgebra
Linear, com enfoque maior nos operadores lineares do plano R2. Através de exemplos,
explora-se um vasto conjunto de transformações no plano a fim de mostrar outras aplicações
de matrizes no ensino médio e prepara o terreno para a apresentação do Teorema
Espectral para operadores auto-adjuntos de R2. Este Teorema diz que para todo operador
auto-adjunto T : E!E, num espaço vetorial de dimensão finita, munido de produto
interno, existe uma base ortonormal fu1; : : : ;ung E formada por autovetores de T. O trabalho
culmina com aplicações sobre o estudo das secções cônicas, formas quadráticas e
equações do segundo grau em x e y, no qual o Teorema Espectral se traduz como Teorema
dos Eixos Principais, embora essa nomenclatura não seja usada nesse trabalho (para um
estudo mais aprofundado neste tema ver [3], [4], [5], [7]). Retomando assim um estudo
feito por Joseph Louis Lagrange em "Recherche d’Arithmétique", entre 1773 e 1775, no
qual estudou a propriedade de números que são a soma de dois quadrados. Assim, foi
levado a estudar os efeitos das transformações lineares com coeficientes inteiros numa
forma quadrática de duas variáveis.
|
2 |
Variação primeira e segunda para o primeiro autovalor de um problema elíptico / First and second variation of the first eigenvalue of an elliptic problemMartins, Sergio Tadao 21 November 2007 (has links)
Consideraremos o problema elípitco $-\\Delta u + \\alpha\\chi_Du = \\lambda u$ em $\\Omega$, onde $\\Omega$ é um domínio de R^n com fronteira regular, e $D\\subset \\Omega$ é um subconjunto fechado de medida de Lebesgue fixada. A motivação para este problema vem da Mecânica, onde esta equação é encontrada no estudo de vibrações de uma membrana composta. Seja $\\lambda_1(D)$ o primeiro autovalor do problema, como função do conjunto D. Nesse trabalho mostraremos que $\\lambda_1$ é um autovalor simples, e estudaremos o problema de minimizar $\\lambda_1$ ao variarmos D no conjunto de todos os subconjuntos de medida fixada de $\\Omega$. Mais especificamente, determinaremos fórmulas para a variação primeira e segunda de $\\lambda_1$. / We will consider the elliptic problem $-\\Delta u + \\alpha\\chi_Du = \\lambda u in $\\Omega$, where $\\Omega$ is a domain in R^n with regular boundary, and $D \\subset\\Omega$ is a closed subset with prescribed Lebesgue measure. The motivation for this problem comes from Mechanics, where this equation models the vibrations of a composite membrane. Let $\\lambda_1(D)$ be the first eigenvalue of the problem, which is seen as a function of the set D. In this work, we will show that $\\lambda_1$ is a simple eigenvalue, and we will study the problem of minimizing $\\lambda_1(D)$ when D varies in the family of all closed subsets of $\\Omega$ with a given Lebesgue measure. More precisely, we will determine formulas for the first and the second variation of $\\lambda_1$.
|
3 |
Variação primeira e segunda para o primeiro autovalor de um problema elíptico / First and second variation of the first eigenvalue of an elliptic problemSergio Tadao Martins 21 November 2007 (has links)
Consideraremos o problema elípitco $-\\Delta u + \\alpha\\chi_Du = \\lambda u$ em $\\Omega$, onde $\\Omega$ é um domínio de R^n com fronteira regular, e $D\\subset \\Omega$ é um subconjunto fechado de medida de Lebesgue fixada. A motivação para este problema vem da Mecânica, onde esta equação é encontrada no estudo de vibrações de uma membrana composta. Seja $\\lambda_1(D)$ o primeiro autovalor do problema, como função do conjunto D. Nesse trabalho mostraremos que $\\lambda_1$ é um autovalor simples, e estudaremos o problema de minimizar $\\lambda_1$ ao variarmos D no conjunto de todos os subconjuntos de medida fixada de $\\Omega$. Mais especificamente, determinaremos fórmulas para a variação primeira e segunda de $\\lambda_1$. / We will consider the elliptic problem $-\\Delta u + \\alpha\\chi_Du = \\lambda u in $\\Omega$, where $\\Omega$ is a domain in R^n with regular boundary, and $D \\subset\\Omega$ is a closed subset with prescribed Lebesgue measure. The motivation for this problem comes from Mechanics, where this equation models the vibrations of a composite membrane. Let $\\lambda_1(D)$ be the first eigenvalue of the problem, which is seen as a function of the set D. In this work, we will show that $\\lambda_1$ is a simple eigenvalue, and we will study the problem of minimizing $\\lambda_1(D)$ when D varies in the family of all closed subsets of $\\Omega$ with a given Lebesgue measure. More precisely, we will determine formulas for the first and the second variation of $\\lambda_1$.
|
4 |
O teorema espectral e a propriedade de \"self-adjointness\" para alguns operadores de Schrödinger / The spectral theorem and the self-adjointness property for some Schrödinger operatorsRodrigo Augusto Higo Mafra Cabral 18 December 2014 (has links)
Neste texto são demonstrados, a partir do ponto de vista da teoria dos espaços de Hilbert e da teoria das C*-álgebras, teoremas relacionados a operadores auto-adjuntos em espaços de Hilbert, entre os quais estão o Teorema Espectral, o teorema de Kato-Rellich e a desigualdade de Kato. Também são dadas aplicações destes teoremas a alguns operadores de Schrödinger provenientes da Física-Matemática. / In this text we prove, within the Hilbert spaces theory and C*-algebras points of view, some theorems which are related to self-adjoint operators acting on Hilbert spaces, among which are the Spectral Theorem, the Kato-Rellich theorem and Kato\'s inequality. Also, some applications to Schrödinger operators coming from the Mathematical-Physics context are given.
|
5 |
O teorema espectral e a propriedade de \"self-adjointness\" para alguns operadores de Schrödinger / The spectral theorem and the self-adjointness property for some Schrödinger operatorsCabral, Rodrigo Augusto Higo Mafra 18 December 2014 (has links)
Neste texto são demonstrados, a partir do ponto de vista da teoria dos espaços de Hilbert e da teoria das C*-álgebras, teoremas relacionados a operadores auto-adjuntos em espaços de Hilbert, entre os quais estão o Teorema Espectral, o teorema de Kato-Rellich e a desigualdade de Kato. Também são dadas aplicações destes teoremas a alguns operadores de Schrödinger provenientes da Física-Matemática. / In this text we prove, within the Hilbert spaces theory and C*-algebras points of view, some theorems which are related to self-adjoint operators acting on Hilbert spaces, among which are the Spectral Theorem, the Kato-Rellich theorem and Kato\'s inequality. Also, some applications to Schrödinger operators coming from the Mathematical-Physics context are given.
|
Page generated in 0.0535 seconds