• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluidos em Espaços Não-Comutativos.

HOLENDER, L. 27 December 2011 (has links)
Made available in DSpace on 2018-08-01T22:29:56Z (GMT). No. of bitstreams: 1 tese_5339_.pdf: 396004 bytes, checksum: 5ae4b41d6d4ecfdc362c3983678b9666 (MD5) Previous issue date: 2011-12-27 / Neste trabalho apresentaremos os resultados da nossa pesquisa sobre a generalização dos fluidos relativísticos na parametrização de Kähler para espaços não-comutativos aplicando métodos de teoria de campo. A nossa proposta se aplica a uma grande classe de fluidos parame-trizados por duas funções arbitrárias suaves: a primeira que generaliza o potencial de Kähler de-nido na superfície dos potenciais complexos do fluido e a segunda que parametriza a equação de estado. Determinamos, também, os vínculos que os graus de liberdade dos fluidos devem satisfazer para que a teoria tenha as simetrias funda-mentais da geometria não-comutativa e calcularemos as grandezas físicas do fluido não-comutativo.
2

Investigation of ultra-high sensitivity klystron cavity transducers for broadband resonant-mass gravitational wave detectors.

Guilherme Leite Pimentel 03 July 2008 (has links)
We show that, with a suitable choice of the parameters of the gravitational wave detector Mario Schenberg, with technological accessible parameters (using state-of-art electronics), its sensitivity curve can be improved over the current project curve to become competitive with interferometric detectors in a frequency band of ~1500 Hz, in the region from 1000 to 10000 Hz (these competitive bands are centered at the sphere's quadrupole modes). The sensitivity curve of an array of 100 identical spheres identical to the Schenberg one is also analyzed, and is competitive against advanced LIGO in the entire band. A detailed study of the project's viability is conducted, with an emphasis on the project of the klystron resonant cavity, which will have a center post with a 1 nm gap, which represents a great technological challenge. This challenge is analyzed in terms of the cavity project as well as with a focus on the Casimir effect on the cavity. This could open an opportunity for precise measurements of this effect on a new distance scale compared to current measurements (in the m scale).
3

Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg / Construction of a Topological Quantum Field Theory from the Kuperberg Invariant

Silva, Anderson Alves da 28 September 2015 (has links)
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo. / Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.
4

Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg / Construction of a Topological Quantum Field Theory from the Kuperberg Invariant

Anderson Alves da Silva 28 September 2015 (has links)
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo. / Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.

Page generated in 0.0732 seconds