Spelling suggestions: "subject:"terahertz"" "subject:"erahertz""
241 |
Terahertz time-domain spectroscopy and near-field imaging of microstructured waveguidesPan, Yi January 2013 (has links)
This thesis presents studies of novel terahertz photonic devices, including photoconductive optoelectronic devices and guided-wave components, aimed at the development of next-generation terahertz systems. In chapter 2, a scalable interdigitated THz transmitter is designed to increase the output power and compared with a conventional 50 μm coplanar transmitter. In chapter 3, we compare four different receivers with different antenna geometries in terms of bandwidth and sensitivity. Then we describe a photoconductive near-field detector with a subwavelength aperture and its system integration and characterization. In chapter 4, a parallel metal plate waveguide is designed with an integrated step inside the waveguide that can couple to higher order TM modes efficiently from the TEM mode. In this chapter, we also experimentally and numerically study a 2-dimensionally tapered parallel plate waveguide, by which a free-space THz beam can be focused into a deep subwavelength-scale volume. In chapter 5, a parallel thin dielectric film waveguide is used to explore the guiding mechanism of an antiresonant optical reflection waveguide. Cylindrical silica single capillaries and a microstructured capillary, which guide in a similar way, are characterized in terms of mode profiles and attenuation. In chapter 6, we study oblique transmission through freestanding thin nickel films, which are perforated with periodic conical hole arrays. Surface modes can be supported by both metallic surfaces with different nonlinear dispersion curves, which results in spectral interferences in a near-field region when the surface modes couple out of the waveguide into free space.
|
242 |
A terahertz holography imaging system for concealed weapon detection applicationZhou, Min January 2018 (has links)
Many research groups have conducted the investigation into terahertz technology for various applications over the last decade. THz imaging for security screening has been one of the most important applications because of its superior performance of high resolution and not health hazardous. Due to increasing security requirements, it is desirable to devise a high-speed imaging system with high image quality for concealed weapon detection. Therefore, this thesis presents my research into a low-cost and fast THz imaging system for security application. This research has made a number of contributes to THz imaging, such as proposing the beam scanning imaging approach to reduce the scanning time; developing the simulation method of the scanned imaging system; investigating new reconstruction algorithms; studying the optimal spatial sampling criterion; and verifying the beam scanning scheme in experiment. Firstly, the beam scanning scheme is proposed and evaluated in both simulation and experiment, compared to the widely applied raster scanning scheme. A better mechanic rotation structure is developed to reduce the scanning time consumed and realise a more compact system. Then, a rotary Dragonian multi-reflector antenna subsystem, comprising two rotated reflectors is designed to form a similar synthetic aperture being realised in the raster scanned scheme. Thirdly, the simulation of the THz scanning imaging system is achieved by employing Physical Optics algorithm. The transposed convolution and partial inverse convolution reconstruction algorithms are investigated to speed up the image re-construction. Finally, two THz imaging systems based on the raster and beam scanning schemes are assessed and compared in the experiments. The back-propagation, transposed convolution and partial inverse convolution algorithms are applied in these experiments to reconstruct the images. The proposed beam scanning scheme can be further explored together with antenna arrays to provide a compact, fast and low-cost THz imaging system in the future.
|
243 |
Bloch oscillations and Wannier Stark Ladder study in Semiconductor Superlattice / Oscillations de Bloch et échelle de Wannier Stark dans des superréseaux semiconducteursMeng, Fanqi 20 December 2012 (has links)
Le champ électromagnétique térahertz (THz) se situe dans l'intervalle de fréquence entre l'infrarouge et les micro-ondes, à peu près entre 1 THz à 10 THz. Ce domaine est hautement souhaitable tant pour la recherche fondamentale que pour les applications. Pourtant des sources THz compacts et accordables ne sont pas encore disponibles. Depuis la première proposition en 1970, les superréseaux semiconducteurs, dans lequel deux couches semi-conductrices atomiques avec bande interdite différente sont disposés périodiquement, fournissent de nouvelles possibilités. De nouvelles techniques et de nouveaux dispositifs deviennent réalisables. Dans cette thèse, les oscillations de Bloch dans des mini-bandes électroniques d’un superréseau polarise et la dispersion du gain associée sont utilisées pour réaliser une source THz compacte et accordable : l’oscillateur de Bloch THz. Un premier ensemble de dispositifs utilisent des réseaux dopes spécifiquement conçus pour éviter la formation de domaine d’accumulation de charges. Ces dispositifs utilisent une surface semi-isolante ou deux surfaces métalliques permettant un guidage par plasmon de surface. Cependant, malgré la réalisation de couplage par les bords ou par un réseau diffractant en surface et des mesures directes ou avec un interféromètre a transformation de Fourrier (FTIR), l’électroluminescence a été observée dans le domaine térahertz, avec un gain qui n’a pas pu etre relie aux oscillations de Bloch. Avec des superréseaux non dope, l'émission THz des oscillations de Bloch a été détectée par spectroscopie dans le domaine temporel. La dépendance de la fréquence d’émission avec le champ électrique appliqué constitue une preuve directe des oscillations de Bloch. L’échelle de Wannier Stark des trous sous pompage optique continu a aussi été observe dans les superréseaux non dopes. Avec l’augmentation de la puissance de pompage optique, les pics du photocourant se décalent et leurs formes deviennent asymétriques. L’évolution est attribue a l’accumulation des porteurs photogénérés dans les deux couches encadrant le superréseau. En outre, pour une puissance de pompage élevée, la bistabilité du photocourant a été également observée. / Terahertz (THz) electromagnetic field, which lies in the frequency gap between the infrared and microwave, roughly between 1 THz to 10 THz, is highly desirable for both fundamental research and application. Yet tuneable compact THz sources are still not available. On the other hand, ever since first proposed in 1970, semiconductor superlattice provides new playground for various new technique and devices of tremendous research and application interest. In this thesis, an innovative theme, relying on Bloch oscillations in a dc biased semiconductor superlattice, is explored to realize tunable compact THz source THz Bloch oscillator. For doped superlattice Bloch oscillator, we designed quantum cascade super-superlattice structure to realize Bloch oscillations whilst prohibit electrical domain formation. The designed structures were processed into various waveguide and grating devices for electroluminescence detection using Fourier transform infrared spectroscopy (FTIR). The Bloch gain of semi-insulating surface plasmon waveguide device was also measured using THz time domain spectroscopy. Even though the electroluminescence and gain at THz regime were observed, no direct evidence of Bloch emission was confirmed. For undoped superlattice, the THz emission from Bloch oscillations was observed by time domain spectroscopy. At last, the photocurrent corresponding to heavy hole and Wannier Stark Ladder (WSL) states transitions in undoped superlattice was studied. Under CW laser pumping, the photocurrent as function of the applied voltage showed multiple WSL peaks, which indicated laser induced and controllable negative differential conductance (NDC). With increasing pumping power, the nonlinear NDC regime and bistable states were investigated as well.
|
244 |
The fabrication and characterization of terahertz wave photoconductive dipole antennas on oxygen ion implanted GaAs. / CUHK electronic theses & dissertations collectionJanuary 2009 (has links)
Chen, Kejian. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 156-164). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
|
245 |
Quantum dot-based semiconductor Terahertz transceiver systemsLeyman, Ross January 2014 (has links)
Terahertz (THz) technology is still currently a rapidly developing area of research with applications already demonstrated in the fields of biology, medicine, security, chemical/materials inspection and astrophysics to name a few. The diversity of applications which require the generation and measurement of THz or sub-millimeter (sub-mm) electromagnetic (EM) signals is the result of the vast number of chemical elements and compounds which exhibit molecular transitions and vibrational behavior that occur at frequency ranges corresponding to the so-called 'THz gap', roughly defined as 0.05-10 THz. The THz gap was named as such because of the relative difficulty in generating and analysing EM waves in this frequency band. This was due to the inherent challenges in generating either electrical signals with response periods below 1 picosecond (ps), or optical signals with wavelengths in the far-infrared (FIR) range. High absorption of THz signals in atmosphere via absorption by molecules such as H2O also impeded early developments and is a key issue in THz systems even today. There is now a wide variety of THz system solutions, each of which exhibits a different set of operational advantages and limitations. Arguably, the most well-established THz technique to date is based on the use of photoconductive antennas (PCAs) driven by ultrafast pulsed or dual-wavelength laser systems. This technique is the basis for the work presented in this thesis, which is an investigation into the potential utilisation of quantum dot (QD)-based semiconductor materials and devices in THz systems. This thesis discusses the work carried out in the development of a novel class of PCA devices which were postulated to enable efficient optical-to-THz signal conversion, whilst also overcoming several major limitations normally exhibited by PCA devices such as limited optical wavelength pumping range and thermal breakdown. To summarise briefly, these issues were addressed by considering: the additional pump absorption energy ranges enabled by the inclusion of multiple bandgap-engineered semiconductor materials and quantum-confined structures; the higher thermal conductivity and hence pump tolerance exhibited by relatively high-quality (low defect) absorption layers; and by simultaneously harnessing the ultrafast charge carrier modulation exhibited by the integrated QDs. Additionally, some work was carried out using QD-based lasers as pump sources, with the initial intention to explore the feasibility of a fully QD-based THz transceiver system and draw some conclusions as to the future potential for ultra-compact or even lab-on-chip THz systems, for example.
|
246 |
Terahertz frequency analysis of gaseous and solid samples using terahertz time-domain spectroscopySmith, Ryan Michael 01 July 2012 (has links)
Developments in semiconductor and laser technologies have facilitated development of terahertz (THz)-frequency (˜2-200 cm-1) technologies. Results published in the literature as far back as the early 20th century demonstrate the utility of this frequency range for myriad applications, but the improved performance of modern THz technologies has renewed interest in THz-frequency analysis. Material presented in this dissertation focuses on three applications of terahertz time-domain spectroscopy (THz-TDS): quantitation of gas-phase molecular species, analysis of polymeric materials, and investigation of dental tissue/composite structures.
Gas phase species were quantified individually at concentrations ranging from several parts per million to several parts per thousand using various chemometric methods. Quantitative model robustness was evaluated by comparison of model precision, and partial least-squares (PLS) regressions provided the greatest precision. Species were quantified in mixtures using PLS with errors of prediction below the permissible exposure limits (PELs) set by the Occupational Safety and Health Administration. The effect of spectral broadening as a result of overall sample pressure was investigated, and species were analyzed in mixtures at various overall pressures. Errors of prediction were again near or below the PELs, demonstrating the utility of this method for atmospheric analysis. Chemical selectivity available in THz spectral features was evaluated and compared to selectivity available in infrared frequencies.
Spectral parameters measured in the THz frequency range also provide insight into structural properties of polymeric materials. In some cases, spectral peaks may be used to identify the temperature at which phase changes occur within these materials. THz refractive index spectra were found to be a sensitive and non-destructive tool for identification of phase transition temperatures.
The time-resolved measurement of THz-TDS makes it particularly useful for rapid, non-destructive analysis of layered structures. Ordinarily, the strength of bonds between dental tissues and composite materials are evaluated in the laboratory using destructive failure analyses. Transparency of dental tissues and composite materials used for restorative procedures to THz pulses allows investigation of interfaces between these materials. Refractive index spectra indicate locations in which delamination has occurred between bonded layers. These results provide an overview of unique capabilities of the THz-TDS method in real-life spectral analyses.
|
247 |
Modeling Terahertz Diffuse Scattering from Granular Media Using Radiative Transfer TheoryNam, Kyung Moon 01 January 2010 (has links)
Terahertz (THz) spectroscopy can potentially be used to probe and characterize inhomogeneous materials, however spectroscopic identification of such materials from spectral features of diffuse returns is a relatively underdeveloped area of study. In this thesis, diffuse THz scattering from granular media is modeled by applying radiative transfer (RT) theory for the first time in THz sensing. Both classical RT theory and dense media radiative transfer (DMRT) theory based on the quasi-crystalline approximation (QCA) are used to calculate diffuse scattered intensity. The numerical solutions of the vector radiative transfer equations (VRTE) were coded and calculated in MATLAB. The diffuse scattered field from compressed Polyethylene (PE) pellets containing steel spheres was measured in both transmission and reflection using a THz time domain spectroscopy (THz-TDS) system. Measurement results showed energy redistribution by granular media due to volume scattering as well as angle dependent spectral features due to Mie scattering. The RT model was validated by successfully reproducing qualitative features observed in experimental results. Diffuse intensity from granular media containing Teflon, lactose sugar, and C4 explosive was then calculated using the RT models. Simulation results showed the amplitude of diffuse intensity is affected by factors such as grain size, fractional volume of grains, thickness of scattering layer, and scattering angles. Spectral features were also observed in the diffuse intensity spectra from media containing grains with THz spectral signatures. The simulation results suggest the possibility of identifying materials from diffuse intensity spectra.
|
248 |
3-D Terahertz Synthetic-Aperture Imaging and SpectroscopyHenry, Samuel C. 07 February 2013 (has links)
Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation [1]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).
|
249 |
Plasmonic Nanoplatforms for Biochemical Sensing and Medical ApplicationsAhmadivand, Arash 24 January 2018 (has links)
Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the metal-dielectric interface under intense beam radiation, has been studied for its immense potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-chip devices. The key feature, which makes the plasmonic structures promising is the ability to support strong resonances with different behaviors and tunable localized hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of light-matter interactions at subwavelength nanostructures and use of this understanding to tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant modes are essential toward the realization of highly functional devices with a wide range of applications from sensing to switching.
We investigated the excitation of various plasmonic resonance modes (i.e. Fano resonances, and toroidal moments) using both optical and terahertz (THz) plasmonic metamolecules. By designing and fabricating various nanostructures, we successfully predicted, demonstrated and analyzed the excitation of plasmonic resonances, numerically and experimentally. A simple comparison between the sensitivity and lineshape quality of various optically driven resonances reveals that nonradiative toroidal moments are exotic plasmonic modes with strong sensitivity to environmental perturbations. Employing toroidal plasmonic metasurfaces, we demonstrated ultrafast plasmonic switches and highly sensitive sensors. Focusing on the biomedical applications of toroidal moments, we developed plasmonic metamaterials for fast and cost-effective infection diagnosis using the THz range of the spectrum. We used the exotic behavior of toroidal moments for the identification of Zika-virus (ZIKV) envelope proteins as the infectious nano-agents through two protocols: 1) direct biding of targeted biomarkers to the plasmonic metasurfaces, and 2) attaching gold nanoparticles to the plasmonic metasurfaces and binding the proteins to the particles to enhance the sensitivity. This led to developing ultrasensitive THz plasmonic metasensors for detection of nanoscale and low-molecular-weight biomarkers at the picomolar range of concentration.
In summary, by using high-quality and pronounced toroidal moments as sensitive resonances, we have successfully designed, fabricated and characterized novel plasmonic toroidal metamaterials for the detection of infectious biomarkers using different methods. The proposed approach allowed us to compare and analyze the binding properties, sensitivity, repeatability, and limit of detection of the metasensing devices
|
250 |
Acoustique Picoseconde dans les multicouches métalliquesLaborde, Stephane 22 February 2006 (has links) (PDF)
Ce travail porte sur l'excitation et la détection d'ultrasons dans des multicouches métalliques en acoustique picoseconde afin d'engendrer des ondes de hautes fréquences (jusqu'au THz) pour pouvoir éventuellement les émettre dans un matériau. Nous avons développé des modèles permettant de calculer les réponses optiques et acoustiques de structures excitées par des impulsions lasers ultrabrèves. D'une part, nous avons étudié les effets d'interface à l'origine de l'anomalie élastique dans certains systèmes multicouches et nous avons montré que l'adoucissement observé dans les systèmes Mo/Ni est dû à des alliages interfaciaux épais de 1,3 nm. D'autre part, l'étude des multicouches périodiques a permis d'expliciter les processus d'excitation et de détection de modes résonnants dans des bandes de fréquences interdites. Enfin, nous avons réalisé une expérience de transmission à travers un substrat épais et montré qu'on pouvait transmettre des fréquences supérieures à 200 GHz.
|
Page generated in 0.0304 seconds