Spelling suggestions: "subject:"terrestrial laser canner"" "subject:"terrestrial laser 3dscanner""
1 |
Lasers scanners terrestres: desenvolvimento de metodologias para análise da acurácia. / Terrestrial lasers scanners: development of methodologies for analysis of accuracy.Borges, Paulo Augusto Ferreira 27 April 2017 (has links)
A calibração de instrumento é reconhecida como um importante processo para a garantia de qualidade de dados obtidos a partir de um laser scanner terrestre (TLS). Um aspecto importante na garantia da qualidade de nuvem de pontos tridimensionais capturadas com instrumentos TLS é a calibração geométrica. Erros sistemáticos inerentes aos instrumentos, se não corrigidos, podem degradar a acurácia da nuvem de pontos obtida pelo scanner. A modelagem destes erros sistemáticos e o uso de metodologias de calibração para estimativa dos coeficientes do modelo permitem quantificar e avaliar a qualidade e a acurácia dos sistemas lasers scanners terrestres. Identificar os diferentes erros inerentes ao equipamento ou ao processo de medição é um fator de grande importância para certificá-los, comprovando sua conformidade com a precisão nominal definida pelos fabricantes. Esta dissertação apresenta propostas de diferentes metodologias para aferição e calibração de laser scanners terrestres. A primeira metodologia refere-se à auto-calibração de TLS que permite obter os parâmetros de calibração referentes aos erros sistemáticos de distância (??), colimação (?C), direção horizontal (??) e o erro de índice vertical (??). Dois equipamentos foram submetidos à auto-calibração, um equipamento novo, recém-fabricado, modelo Faro Focus 3D X330, que foi utilizado como referência, e um equipamento antigo, modelo Faro Photon 80, que devido ao tempo de constante uso foi submetido à aferição. Os resultados comprovaram a eficiência da metodologia de auto-calibração na determinação dos parâmetros de correção sistemática adicional, indicando que o scanner novo apresentou resultados dentro das especificações e o modelo antigo, resultados acima dos valores de precisão definidos pelo fabricante. Visando facilitar os procedimentos de campo e escritório para fins de calibração de TLS foram propostas duas metodologias com a utilização de peças fabricadas para uso no presente trabalho, visando a obtenção da acurácia tridimensional de um TLS. A primeira consiste na utilização de uma placa de aço com nove furos sobre os quais são alojadas nove esferas de poliacetal. A segunda consiste na utilização de um sistema tridimensional de planos perpendiculares, através do qual pode-se obter a acurácia 3D do TLS. Os resultados obtidos comprovam a eficiência das duas metodologias propostas, aplicadas em procedimentos de calibração em laboratório utilizando varreduras em equipamentos de curto alcance. Por fim foram realizados testes para determinação dos parâmetros de calibração relativos ao erro de zero ou constante aditiva, o erro de escala e o erro cíclico em linhas bases de calibração EDM, utilizando-se a rede de pilares da USP. Os resultados comprovam a necessidade de contar com distâncias entre pilares menores para utilização em TLS de curto alcance, porém, para laser scanners com maior autonomia de distância se mostrou um método eficiente. / Instrument calibration is recognized as an important process for quality assurance of data obtained from a terrestrial laser scanner (TLS). An important aspect in ensuring the quality of three-dimensional point cloud captured with TLS instruments is geometric calibration. Systematic errors inherent in the instruments, if not corrected, can degrade the accuracy of the cloud of points obtained by the scanner. The modeling of these systematic errors and the use of calibration methodologies to estimate the coefficients of the model allow quantifying and evaluating the quality and accuracy of the laser systems. Identifying the different errors inherent in the equipment or the measurement process is a factor of great importance to certify them, proving their conformity with the nominal precision defined by the manufacturers. This dissertation presents proposals of different methodologies for calibration of terrestrial laser scanners. The first methodology refers to TLS self-calibration, which allows to obtain the calibration parameters for systematic errors of distance (??), collimation (?C), horizontal direction (??) and vertical index error (??). Two devices were submitted to self-calibration, a new, newly manufactured Faro Focus 3D X330 model, which was used as reference, and an old equipment, Faro Photon 80 model, which due to the time of constant use was subjected to the calibration . The results proved the efficiency of the self-calibration methodology in determining the additional systematic correction parameters, indicating that the new scanner presented results within the specifications and the old model, values above the precision values defined by the manufacturer. In order to facilitate the field and office procedures for TLS calibration purposes, two methodologies were proposed with the use of prefabricated parts to obtain the three-dimensional accuracy of a TLS. The first proposes the use of a steel plate with nine holes on which are housed nine spheres of polyacetal. The second refers to the use of a three-dimensional system of perpendicular planes, where from the point cloud of the different planes the 3D accuracy of the TLS can be obtained. The results obtained prove the efficiency of the two proposed methodologies, applied in laboratory calibration procedures using short-range scans. Finally, tests were carried out to determine the calibration parameters related to the error of zero or additive constant, the scale error and the cyclic error in EDM calibration baselines, using the USP\'s network of columns. The results confirm the need for adequacy of the distance between columns for use in short-range TLS, but for laser scanners with greater distance autonomy an efficient method was shown.
|
2 |
Automated registration of unorganised point clouds from terrestrial laser scannersBae, Kwang-Ho January 2006 (has links)
Laser scanners provide a three-dimensional sampled representation of the surfaces of objects. The spatial resolution of the data is much higher than that of conventional surveying methods. The data collected from different locations of a laser scanner must be transformed into a common coordinate system. If good a priori alignment is provided and the point clouds share a large overlapping region, existing registration methods, such as the Iterative Closest Point (ICP) or Chen and Medioni’s method, work well. In practical applications of laser scanners, partially overlapping and unorganised point clouds are provided without good initial alignment. In these cases, the existing registration methods are not appropriate since it becomes very difficult to find the correspondence of the point clouds. A registration method, the Geometric Primitive ICP with the RANSAC (GPICPR), using geometric primitives, neighbourhood search, the positional uncertainty of laser scanners, and an outlier removal procedure is proposed in this thesis. The change of geometric curvature and approximate normal vector of the surface formed by a point and its neighbourhood are used for selecting the possible correspondences of point clouds. In addition, an explicit expression of the position uncertainty of measurement by laser scanners is presented in this dissertation and this position uncertainty is utilised to estimate the precision and accuracy of the estimated relative transformation parameters between point clouds. The GP-ICPR was tested with both simulated data and datasets from close range and terrestrial laser scanners in terms of its precision, accuracy, and convergence region. It was shown that the GP-ICPR improved the precision of the estimated relative transformation parameters as much as a factor of 5. / In addition, the rotational convergence region of the GP-ICPR on the order of 10°, which is much larger than the ICP or its variants, provides a window of opportunity to utilise this automated registration method in practical applications such as terrestrial surveying and deformation monitoring.
|
3 |
Real-time updated free station as a georeferencing method in terrestrial laser scanningWang, Zhao January 2011 (has links)
Georeferencing is an important task in terrestrial laser scanning (TLS) applications. It means transformation of the 3D data (point clouds) into an external coordinate system so that it can be combined with other spatial data. The aim of this study is to investigate the accuracy and precision of real-time updated free station (RUFS) as a georeferencing method in TLS applications, and to evaluate its efficiency. The RUFS is used in total station surveys, implies determination of the instrument position and orientation based on measurements of two or more backsight targets, whose coordinates are determined with Real Time Kinematic (RTK) GNSS. The field surveying was carried out in May and June 2010. A control point was established based on static GNSS measurements in order to have reference data to evaluate the accuracy of station coordinates. Three different configurations of 10 backsight targets were tested: the targets were evenly spread over the sectors of 200 and 100 gon on one arc and 100 gon on two arcs. The measurements were repeated ten times for each configuration. The precision and accuracy of the station position were then derived by processing the surveying data. The results show that with increasing the number of backsight points from 2 to 10, the planimetric precision of the station position improved from 6 to 3 mm; the height precision was at the level of 3−5 mm. The accuracy of the station position improved from 10 to 2 mm in planimetry, and from 28 to 11 mm in height. The time expense for one set of measurements with RUFS was approximately 15 minutes.
|
4 |
Lasers scanners terrestres: desenvolvimento de metodologias para análise da acurácia. / Terrestrial lasers scanners: development of methodologies for analysis of accuracy.Paulo Augusto Ferreira Borges 27 April 2017 (has links)
A calibração de instrumento é reconhecida como um importante processo para a garantia de qualidade de dados obtidos a partir de um laser scanner terrestre (TLS). Um aspecto importante na garantia da qualidade de nuvem de pontos tridimensionais capturadas com instrumentos TLS é a calibração geométrica. Erros sistemáticos inerentes aos instrumentos, se não corrigidos, podem degradar a acurácia da nuvem de pontos obtida pelo scanner. A modelagem destes erros sistemáticos e o uso de metodologias de calibração para estimativa dos coeficientes do modelo permitem quantificar e avaliar a qualidade e a acurácia dos sistemas lasers scanners terrestres. Identificar os diferentes erros inerentes ao equipamento ou ao processo de medição é um fator de grande importância para certificá-los, comprovando sua conformidade com a precisão nominal definida pelos fabricantes. Esta dissertação apresenta propostas de diferentes metodologias para aferição e calibração de laser scanners terrestres. A primeira metodologia refere-se à auto-calibração de TLS que permite obter os parâmetros de calibração referentes aos erros sistemáticos de distância (??), colimação (?C), direção horizontal (??) e o erro de índice vertical (??). Dois equipamentos foram submetidos à auto-calibração, um equipamento novo, recém-fabricado, modelo Faro Focus 3D X330, que foi utilizado como referência, e um equipamento antigo, modelo Faro Photon 80, que devido ao tempo de constante uso foi submetido à aferição. Os resultados comprovaram a eficiência da metodologia de auto-calibração na determinação dos parâmetros de correção sistemática adicional, indicando que o scanner novo apresentou resultados dentro das especificações e o modelo antigo, resultados acima dos valores de precisão definidos pelo fabricante. Visando facilitar os procedimentos de campo e escritório para fins de calibração de TLS foram propostas duas metodologias com a utilização de peças fabricadas para uso no presente trabalho, visando a obtenção da acurácia tridimensional de um TLS. A primeira consiste na utilização de uma placa de aço com nove furos sobre os quais são alojadas nove esferas de poliacetal. A segunda consiste na utilização de um sistema tridimensional de planos perpendiculares, através do qual pode-se obter a acurácia 3D do TLS. Os resultados obtidos comprovam a eficiência das duas metodologias propostas, aplicadas em procedimentos de calibração em laboratório utilizando varreduras em equipamentos de curto alcance. Por fim foram realizados testes para determinação dos parâmetros de calibração relativos ao erro de zero ou constante aditiva, o erro de escala e o erro cíclico em linhas bases de calibração EDM, utilizando-se a rede de pilares da USP. Os resultados comprovam a necessidade de contar com distâncias entre pilares menores para utilização em TLS de curto alcance, porém, para laser scanners com maior autonomia de distância se mostrou um método eficiente. / Instrument calibration is recognized as an important process for quality assurance of data obtained from a terrestrial laser scanner (TLS). An important aspect in ensuring the quality of three-dimensional point cloud captured with TLS instruments is geometric calibration. Systematic errors inherent in the instruments, if not corrected, can degrade the accuracy of the cloud of points obtained by the scanner. The modeling of these systematic errors and the use of calibration methodologies to estimate the coefficients of the model allow quantifying and evaluating the quality and accuracy of the laser systems. Identifying the different errors inherent in the equipment or the measurement process is a factor of great importance to certify them, proving their conformity with the nominal precision defined by the manufacturers. This dissertation presents proposals of different methodologies for calibration of terrestrial laser scanners. The first methodology refers to TLS self-calibration, which allows to obtain the calibration parameters for systematic errors of distance (??), collimation (?C), horizontal direction (??) and vertical index error (??). Two devices were submitted to self-calibration, a new, newly manufactured Faro Focus 3D X330 model, which was used as reference, and an old equipment, Faro Photon 80 model, which due to the time of constant use was subjected to the calibration . The results proved the efficiency of the self-calibration methodology in determining the additional systematic correction parameters, indicating that the new scanner presented results within the specifications and the old model, values above the precision values defined by the manufacturer. In order to facilitate the field and office procedures for TLS calibration purposes, two methodologies were proposed with the use of prefabricated parts to obtain the three-dimensional accuracy of a TLS. The first proposes the use of a steel plate with nine holes on which are housed nine spheres of polyacetal. The second refers to the use of a three-dimensional system of perpendicular planes, where from the point cloud of the different planes the 3D accuracy of the TLS can be obtained. The results obtained prove the efficiency of the two proposed methodologies, applied in laboratory calibration procedures using short-range scans. Finally, tests were carried out to determine the calibration parameters related to the error of zero or additive constant, the scale error and the cyclic error in EDM calibration baselines, using the USP\'s network of columns. The results confirm the need for adequacy of the distance between columns for use in short-range TLS, but for laser scanners with greater distance autonomy an efficient method was shown.
|
5 |
Dokumentace části hradu Rokštejn pomocí laserového skenování / Documentation of Rokštejn using laser scanningSchwarz, Jakub January 2016 (has links)
The aim of this thesis is the measure of the Rokštejn castle by laser scanning. The measured data are processed in the SCENE software and accuracy of registration and transformation of scans is intended. The next step is to test the software for working with point cloud. In the end, is in the selected 3D software created 3D model of the castle by using processed point cloud.
|
6 |
Investigation of the use of Laser Scanning for Deformation MonitoringHulumtaye Kefyalew Yederulh, Hulumtaye January 2013 (has links)
The ability of fast and accurate acquiring of large 3D spatial data is the main benefit for consideration of a terrestrial laser scanner in deformation monitoring. The objective of this paper is to discuss this technique with support of practical experiments performed inside a laboratory. It also includes measuring changes from millimetre to sub millimetre level and a comparison of measurements from a terrestrial laser scanner with measurements of other instruments. Various areas of applications are reviewed. The report discusses a surface modeling method to estimate deformation parameters of objects, such as planar, spherical and cylindrical surface representations. Illustrative numerical examples are performed by simulating randomly generated sample point coordinates for estimation of changes of modeled planar and cylindrical surfaces. The practical experiments were performed using a scan of a carton box, a ball and a rounded paper holder, which correspond to the planar, spherical and cylindrical surfaces, respectively. Independent measurements were performed using a total station and a measuring tape to make a comparison with the scanner measurements. A statistical test was performed independently for the changes obtained from each type of modeled surface in order to check whether the movement is real or due to measurement noises. A significant change of the normal of a plane was detected between epochs, and similar results were obtained from both scanner and total station measurements. The normal of the plane was rotated by between scan epochs. A translation of 3.2 and 3.7 millimetres were detected between scan epochs for the center of the sphere and axis of the cylinder, respectively. Only the scanner data was used in this case. From the scanner measurement changes in radii of the sphere and the cylinder were obtained as 1.6 and 3.1 millimetres, respectively between scan epochs. The measurement of the scanner was verified by performing independent measurements using measuring tape. And hence the change in radii of the sphere and the cylinder were obtained as 2.5 and 4 millimetres, respectively.
|
7 |
Field observations of wave induced coastal cliff erosion, Cornwall, UKEarlie, Claire Siobhan January 2015 (has links)
Coastal cliff erosion is a widespread problem that threatens property and infrastructure along many of the world’s coastlines. The management of this risk calls for robust quantification of cliff erosion rates, which are often difficult to obtain along rocky coasts. Quantification of sea-cliff rates of retreat on annual to decadal time scales has typically been limited to rapidly eroding soft rock coastlines. Rates of erosion used for shoreline management in the UK are generally based on analysis of historic maps and aerial photographs which, in rocky coast environments, does not wholly capture the detail and timing at which the processes operate and the failures occur across the cliff face. The first stage of this study uses airborne LiDAR (Light Detection and Ranging) data at nine sites around a rocky coastline (Cornwall, UK) to gain a quantitative understanding of cliff erosion where average recession rates are relatively low (c. 0.1 m yr-1). It was found that three-dimensional volumetric changes on the cliff face and linear rates of retreat can be reliably calculated from consecutive digital elevation models (DEMs) several years apart. Rates of erosion ranged between 0.03–0.3 m yr-1. The spatial variability in recession rates was considered in terms of the relationship with the varying boundary conditions (rock mass characteristics, cliff geometries, beach morphology) and forcing parameters (wave climate and wave exposure). Recession rates were statistically correlated with significant wave height (Hs), rock mass characteristics (GSI) and the ratio between the two (GSI/Hs). Although the rates derived using airborne LiDAR are comparable to the longer term rates of retreat, the detail of erosion to the cliff-face provides additional insight into the processes occurring in slowly eroding environments, which are vital for understanding the failure of harder rock coastlines. In addition to this, the importance of the wave climate and rainfall needs further attention on a more localised scale. Monthly cliff face volume changes, at two particularly vulnerable sites (Porthleven and Godrevy, Cornwall, UK), were detected using a Terrestrial Laser Scanner (TLS). Using these volumes alongside information on beach profile, beach- cliff junction elevation changes and nearshore hydrodynamics have allowed an insight into how the cliffs respond to seasonal fluctuations in wave climate and beach morphology. Monthly variability in beach morphology between the two sites over a one-year survey period i  indicated the influence that beach slope and the elevation of the beach-cliff junction have on the frequency of inundation and the power of wave-cliff impacts. Failure mechanisms between the two sites ranged from rotational sliding of superficial material to quarrying and block removal over the entire cliff elevation, according to the extent of wave-cliff interaction. This particular survey period highlighted the sensitivity of cliff erosion to the variability in wave climate and beach morphology at two different locations in the south-west of the UK, where the vast majority (over 85% of the annual value) of cliff face erosion occurs during the winter when extreme storm waves prevail. Coastal cliff erosion from storm waves is observed worldwide but the processes are notoriously difficult to measure during extreme storm wave conditions when most erosion normally occurs, limiting our understanding of cliff processes. Over January-March 2014, during the largest Atlantic storms in at least 60 years with deep water significant wave heights of 6 – 8 m, cliff-top ground motions of a rocky cliff in the south-west of the UK (Porthleven, Cornwall) showed vertical ground displacements in excess of 50–100 μm; an order of magnitude larger than observations made previously. Repeat terrestrial laser scanner surveys, over a 2-week period encompassing the extreme storms, gave a cliff face volume loss 2 orders of magnitude larger than the long-term erosion rate. Cliff-top ground motions and erosion volumes were compared at two different locations, one a reflective beach with steeply shelving bathymetry (Porthleven, Cornwall) and the other an intermediate, low tide bar-rip beach with a wide coastal slope (Godrevy, Cornwall). Under similar wave conditions (6–8 m Hs and 15–20 s. Tp) the vertical ground motions were an order of magnitude greater at the cliffs fronted by steeply shelving bathymetry, where the breaking waves plunge right at the shoreline, with little prior dissipation, leading to large energetic runup impacting the cliff. These storm results imply that erosion of coastal cliffs exposed to extreme storm waves is highly episodic and that long-term rates of cliff erosion will depend on the frequency and severity of extreme storm wave impacts as well as the wave dissipation that occurs as a function of the nearshore bathymetry. Having recorded microseismic cliff-top motion on this scale for the first time and determined an effective method of monitoring the energetic wave impacts, this study emphasises how investigations of cliff behaviour during storms is not only obtainable, but paramount to understanding coastal evolution under extreme conditions.
|
8 |
Contribution à la reconstruction 3D de bâtiments à partir de nuage de points de scanner laser terrestre / A contribution to 3D building reconstruction from terrestrial laser scanner points cloudBennis, Abdelhamid 02 October 2015 (has links)
La rénovation et la réhabilitation énergétique du parc de bâtiment est un des grands défis identifiés pour les décennies à venir. Devant cet impératif d'une rénovation d'ampleur du parc construit, les solutions techniques utilisant des ossatures rapportées sont employées de plus en plus fréquemment car elles permettent de combiner performance thermique, renouvellement esthétique et ajouts fonctionnels. Une des difficultés dans l'amélioration et l'automatisation des projets de rénovation est liée à la connaissance de la géométrie du bâti existant. Des plans de l'état existant ne sont pas toujours disponibles, et dans le cas échéant, ne sont pas forcément exacts en raison de modifications apportées au bâti et non documentées ou d'écarts initiaux entre les plans et la réalisation. Après une étude bibliographique des méthodes existantes détaillées dans le chapitre 1. Les travaux menés dans le cadre d'une collaboration entre le CRITT Bois et le CRAN ont permis de développer une méthode automatique de reconstruction 3D du modèle de bâtiments à partir de nuages de points obtenus par scanner LASER terrestre. La méthode proposée se décompose en trois phases principales. La première phase détaillée dans le deuxième chapitre, consiste à segmenter le nuage de points en plusieurs plans représentants les façades du bâtiment. L'exploitation de la colorimétrie durant la phase de segmentation du nuage de points permet une réduction importante de la complexité de l'algorithme de segmentation géométrique. L'approche consiste à effectuer dans un premier temps une classification préalable du nuage de points en se basant sur les informations colorimétriques de chaque point. Puis, dans un second temps, il s'agit d'effectuer une segmentation géométrique du nuage de points en utilisant un algorithme de segmentation robuste (RANSAC). Le chapitre 3 présente la deuxième phase qui consiste à modéliser le pas d'échantillonnage de la surface à partir duquel on définit le seuil d'extraction des points de contours. Le but étant d'améliorer la fiabilité d'extraction des points de contours, ainsi que l'approximation de l'erreur sur le modèle. Le chapitre 4 détaille les principales étapes de la reconstruction d'un modèle filaire. Dans un premier temps les régions définies par les points de contours sont classées en Régions d'Irrégularités (RI), Régions d'Eléments Architecturaux (REA) comme les fenêtres et Régions de Façade (RF) représentées par les contours extérieurs de la façade. La deuxième étape consiste à modéliser les différentes régions, par un maillage de Delaunay pour les RI, et des polyèdres pour les RF et REA. La dernière étape calcule une approximation de l'erreur sur le modèle. Les tests de fiabilité de la méthode ont été réalisés sur des chantiers réels conduits par des industriels de la construction et de la rénovation. Il en ressort que la qualité de la reconstruction 3D reste fortement dépendante des facteurs d'acquisition ainsi que de la surface numérisée. L'approximation de l'erreur de modélisation permet ainsi de prévoir à l'avance les erreurs sur le modèle CAO. / The renovation and the improvement of the energy efficiency of existing housing stock is one of big challenges identified for coming decades. In front of this imperative, timber based elements for building renovation are more and more used due to their substantial improvement of the building insulation, aesthetic renewal and functional additions. However, this technology faces some difficulties, one of them is the improvement of the renovation projects automation, which is bound to the knowledge of the existing built geometry. The plans representing the existing state of the building are not always available, and if so, they may be not exact, because the modifications made on the building are usually undocumented. After a literature review of existing methods which are detailed the first chapter. The work within the framework of cooperation between the CRITTBois and CRAN have allowed to develop an automatic method for 3D building CAD model reconstruction from point clouds acquired by a terrestrial LASER scanner. The proposed method is composed of three main phases. The first one detailed in the second chapter, consists in segmenting the point cloud into planar patches representing the building facades. To decrease the segmentation algorithm complexity, the colorimetric information is also considered. The approach consists in making a colorimetric classification of the point cloud in a first step, then a geometrical segmentation of the point cloud using a robust segmentation algorithm (RANSAC). The third chapter presents the second phase of our approach consists in surface sampling steps modeling and boundary point extraction. Here, we consider a local threshold defined according to the approximated surface sampling steps. The aim of considering local threshold is to improve the reliability of the boundary point extraction algorithm and approximating the CAD model error. The last chapter presents the main three steps of the boundary model reconstruction method. The first step consists in classifying the regions defined by their boundary points into three types of regions: Irregularity Region (IR), Architectural Element Region (AER) as windows, and Facades Regions (FR) which represent the building facades defined by their outer boundaries. The second step consists in modeling these regions considering a Delaunay triangulation for the IR and a polyhedral model for the AER and the FR. The third step consists in making an approximation of the error in the model. The method reliability tests were conducted on real projects; they were performed by industrial construction and renovation professionals. The tests show that the quality of the 3D reconstruction remains strongly dependent to the acquisition factors and the scanned surface properties. Also, the approximation of the modeling error can predict in advance the errors on the CAD model.
|
9 |
Alternative Statistical Methods for Analyzing Geological Phenomena: Bridging the Gap Between Scientific DisciplinesVan Gaalen, Joseph Frank 01 January 2011 (has links)
When we consider the nature of the scientific community in conjunction with a sense of typical economic circumstances we find that there are two distinct paths for development. One path involves hypothesis testing and evolution of strategies that are linked with iterations in equipment advances. A second, more complicated scenario, can involve external influences whether economic, political, or otherwise, such as the government closure of NASA's space program in 2011 which will no doubt influence research in associated fields. The following chapters are an account of examples of two statistical techniques and the importance of both on the two relatively unrelated geological fields of coastal geomorphology and ground water hydrology.
The first technique applies a multi-dimensional approach to defining groundwater water table response based on precipitation in areas where it can reasonably be assumed to be the only recharge. The second technique applies a high resolution multi-scalar approach to a geologic setting most often restricted to either high resolution locally, or low resolution regionally. This technique uses time-frequency analysis to characterize cuspate patterns in LIDAR data are introduced using examples from the Atlantic coast of Florida, United States. These techniques permit the efficient study of beachface landforms over many kilometers of coastline at multiple spatial scales. From a LIDAR image, a beach-parallel spatial series is generated. Here, this series is the shore-normal position of a specific elevation (contour line). Well-established time-frequency analysis techniques, wavelet transforms, and S-Transforms, are then applied to the spatial series. These methods yield results compatible with traditional methods and show that it is useful for capturing transitions in cuspate shapes. To apply this new method, a land-based LIDAR study allowing for rapid high-resolution surveying is conducted on Melbourne Beach, Florida and Tairua Beach, New Zealand. Comparisons and testing of two different terrestrial scanning stations are evaluated during the course of the field
investigation.
Significant cusp activity is observed at Melbourne Beach. Morphological observations and sediment analysis are used to study beach cusp morphodynamics at the site. Surveys at Melbourne were run ~500 m alongshore and sediment samples were collected intertidally over a five-day period. Beach cusp location within larger scale beach morphology is shown to directly influence cusp growth as either predominantly erosional or accretional. Sediment characteristics within the beach cusp morphology are reported coincident with cusp evolution. Variations in pthesis size distribution kurtosis are exhibited as the cusps evolve; however, no significant correlation is seen between grain size and position between horn and embayment. During the end of the study, a storm resulted in beach cusp destruction and increased sediment sorting.
In the former technique using multi-dimensional studies, a test of a new method for improving forecasting of surficial aquifer system water level changes with rainfall is conducted. The results provide a more rigorous analysis of common predictive techniques and compare them with the results of the tested model. These results show that linear interpretations of response-to-rainfall data require a clarification of how large events distort prediction and how the binning of data can change the interpretation. Analyses show that the binning ground water recharge data as is typically done in daily format may be useful for quick interpretation but only describes how fast the system responds to an event, not the frequency of return of such a response. Without a secure grasp on the nonlinear nature of water table and rainfall data alike, any binning or isolation of specific data carries the potential for aliasing that must be accounted for in an interpretation. The new model is proven capable of supplanting any current linear regression analysis as a more accurate means of prediction through the application of a multivariate technique. Furthermore, results show that in the Florida surficial aquifer system response-to-rainfall ratios exhibit a maxima most often linked with modal stage.
|
10 |
Dokumentace části hradu Rokštejn pomocí laserového skenování / Documentation of Roštejn using laser scanningVitula, Marek January 2016 (has links)
The goal of this thesis is to scan part of castle Rokštejn using terrestrial laser scanner and from obtained data draw up a 3D model. Model is made with a method using meshing. In this work I also deal with the software, which supports meshing, and evaluating pros and cons of each program. The output of this work is 3D model which will serve to better representation of the current state of the castle and its better documentation.
|
Page generated in 0.104 seconds