• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • Tagged with
  • 272
  • 272
  • 272
  • 157
  • 58
  • 55
  • 44
  • 43
  • 32
  • 32
  • 28
  • 28
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Experimental proposal to determine the spatial significance and location choice on the regrowth of Solemosmilia variabilis in an MPA network versus a large reserve model.

Spiegel, Molly 01 January 2015 (has links)
Over the next three decades, there are many predicted disturbances to Earth’s oceans, such as El Nino and hurricanes, which will lead to mass coral bleaching effects. Marine protected areas have been utilized worldwide to maintain coral population sizes and remediate external stressors, such as overfishing or mining. Using a series of modeling techniques, this thesis will propose an experiment that will determine the optimal distance and location for a future MPA in New Zealand. It will also be measuring whether one large reserve or a network of smaller MPAs are more effective in the regeneration of stony corals. These models will be based on Solemosmilia variabilis, the most common stony coral in the region. Based on past studies, it is hypothesized that there will be a significant positive increase with the metapopulation growth of corals in both protected areas. It is also predicted that there will be a higher rate of connectivity within a network of smaller marine protected areas if the MPAs are less than 2 km apart. If the distance is greater, one larger MPA will be more effective due to the lower rates of genetic drift.
42

Ecohydraulic Investigation of Diatoms in a Bedrock-Controlled Stream

Rittle, Alex M 01 January 2015 (has links)
Recent studies within the past decade or so have shown the importance of algae in geomorphic and hydrologic processes of lotic systems. However, the ecohydraulic role of algae in bedrock systems has largely been ignored. In addition, the utility of algae as indicators of channel dynamics have often been assumed by geomorphologists, but relatively few studies have examined this relationship. The purpose of this study was to determine whether algae, specifically diatoms, are useful indicators of channel geomorphological dynamics, and to examine if distinct habitats or biotopes typical in fluviokarst and bedrock systems provide unique habitat space for diatoms, and to address the potential ecohydraulic implications. The investigation was performed in a 100 m reach of Shawnee Run, a limestone, fluviokarst tributary to the Kentucky River in Mercer County, KY. The results of the study showed that periphyton are not useful indicators of channel dynamics, and that biotopes and other distinct habitats, including riffles, bedforms, and fine sediment, do not provide unique habitat in terms of diatom community composition.
43

Distribution and Movements of Some Fishes in Bear Lake, Utah-Idaho, 1958-59

Loo, Stanley K. Y. 01 January 1960 (has links)
No description available.
44

INVESTIGATIONS IN CRYPTIC SPECIES: CONSIDERATIONS AND APPLICATIONS FOR ESTIMATING DETECTION, OCCUPANCY, AND ABUNDANCE OF SEMI-AQUATIC SNAKES

Oldham, Christian Robert 01 January 2016 (has links)
Snake species are notoriously difficult to study in the field due to their cryptic natural-histories and secretive behaviors. Difficulties associated with detection present challenges estimating parameters including occupancy and abundance, as well as responses to habitat degradation. Our objectives were to use Passive Integrated Transponder (PIT) telemetry to enhance detection of Queensnakes (Regina septemvittata) as compared to traditional capture-mark-recapture (CMR) survey techniques and to examine occupancy and abundance of Queensnakes and Northern Watersnakes (Nerodia sipedon) in streams of differing levels of anthropogenic impact within Central Kentucky. During 2013, we captured Queensnakes and implanted them with PIT tags. We detected significantly more tagged snakes using PIT telemetry than visual surveys. We did not observe significant differences in numbers of snakes detected using PIT telemetry at different times of day. We observed relatively high site fidelity of individuals. During 2014, we conducted point-count surveys of Northern Watersnakes and Queensnakes in streams characterized as highly degraded and lightly impaired. We estimated occupancy and conditional abundance among site types. We did not observe significant differences in occupancy or abundance between historically highly-impacted sites and less-impacted sites. We were able to determine significance of some environmental variables influencing detection of snakes.
45

Comparison of Gastropod Assemblages from Natural and Phosphate Mine Lakes of Central Florida

Mailand, William A. 01 January 2015 (has links)
Investigations were made examining the relationships between gastropod species richness and abundance across 20 phosphate and 20 natural lakes in Central Florida. In additional to lake category, age of phosphate lakes was used to determine if phosphate lakes ever approximate natural lakes. Additional physical, chemical, and biological parameters, including chlorophyll a, Ca, secchi, phosphorous, conductance, fish predation, and recreational lake use were investigated in order to determine if they affected gastropods with lake age. Comparisons were also made between gastropod species richness and average abundance and two groups of dominant vegetation categories: Panicum, a structurally complex macrophyte, and Typha, a less structurally complex macrophyte. After phosphate mining operations are completed, Florida state regulations require the establishment of ecologically viable habitat (created lakes) which reflects the properties of regional natural lakes including vegetation structure, littoral zone, bank slope, and lake depth. The littoral zone is part of the mandated structure of the lake, and is of considerable importance to the uptake, storage, transformation and release of nutrients. Within the littoral zone, gastropods are a critical link in the food web with implications for the long term structure and function of a lake. They are known for their close associations with macrophytes and are common environmental indicators since they have limited mobility, high diversity, are well studied, are representative of their habitat type and have a widespread geographic range. They are also an important food sources for many predators in aquatic environments, include migratory waterfowl and game fish. Gastropod species richness and abundance data were collected via standard net sweep methodology. Abundance was presented in catch per unit effort, therefore all abundance data were averages. Initial comparisons between gastropod species richness and average abundance yielded no significant differences between natural and phosphate lakes. However, when age was applied as a covariate, there was a significant difference between lake age as a continuous variable in species richness comparisons. Additionally, categorical comparisons between lakes older or younger than 30 years indicated significantly higher species richness and average abundance of gastropods in lakes phosphate lakes older than 30 years. Physical and chemical properties of the lakes did not appear to influence gastropod populations between lakes of different ages. Fish predation interactions did not indicate any significant influence either. However, the presence of boat ramps did indicate a positive relationship between average gastropod abundance and species richness and recreational lake use. Littoral zone macrophyte comparisons between dominant vegetation Typha and Panicum indicated a significantly positive relationship between gastropod species richness and average abundance in older phosphate lakes dominated by the more structurally complex Panicum macrophytes. Confidence in the Typha and Panicum results was confounded by lack of access to younger, Typha dominated, phosphate lakes. An increase in sample size for younger Typha lakes, with additional site access, may further support these findings.
46

The Effects of Climate Warming on Plant-Herbivore Interactions

Lemoine, Nathan 16 April 2015 (has links)
Rising temperatures associated with climate change will alter the fundamental physiological processes of most ectothermic species. Drastic changes in catabolic and anabolic reaction rates exert strong effects on growth, reproduction, and consumption rates that cascade up through all levels of the biological hierarchy. This dissertation determined how climate warming might alter the important relationship between plants and insect herbivores, as mediated through changes in herbivore physiology. Consumption and fitness increased with temperature for almost all consumers. However, all consumers also exhibited a critical temperature, beyond which consumption declined rapidly through metabolism continued to increase. This mismatch in metabolic demands and energy intake reduced consumer fitness at high temperatures. Furthermore, increased metabolic nitrogen demand can induce nitrogen limitation in insect herbivores at high temperatures. These basic physiological changes can modify the way herbivores interact with plants in a number of ways. For example, the Japanese beetle, Popillia japonica, altered its feeding behavior on numerous host plant species, depending on host plant quality. Unfortunately, the effects of temperature on plant-herbivore interactions will be difficult to predict, as there was no predictable relationship between consumption and temperature across numerous plant-herbivore pairs. Finally, rising temperatures disrupt insect herbivore control of plant fitness, thereby altering one of the most important components of plant-herbivore interactions. Thus, climate change will fundamentally change the nature of plant-herbivore interactions in the future.
47

Evidence of Climate Variability and Tropical Cyclone Activity from Diatom Assemblage Dynamics in Coastal Southwest Florida

Nodine, Emily R 13 November 2014 (has links)
Estuaries are dynamic on many spatial and temporal scales. Distinguishing effects of unpredictable events from cyclical patterns can be challenging but important to predict the influence of press and pulse drivers in the face of climate change. Diatom assemblages respond rapidly to changing environmental conditions and characterize change on multiple time scales. The goals of this research were to 1) characterize diatom assemblages in the Charlotte Harbor watershed, their relationships with water quality parameters, and how they change in response to climate; and 2) use assemblages in sediment cores to interpret past climate changes and tropical cyclone activity. Diatom assemblages had strong relationships with salinity and nutrient concentrations, and a quantitative tool was developed to reconstruct past values of these parameters. Assemblages were stable between the wet and dry seasons, and were more similar to each other than to assemblages found following a tropical cyclone. Diatom assemblages following the storm showed a decrease in dispersion among sites, a pattern that was consistent on different spatial scales but may depend on hydrological management regimes. Analysis of sediment cores from two southwest Florida estuaries showed that locally-developed diatom inference models can be applied with caution on regional scales. Large-scale climate changes were suggested by environmental reconstructions in both estuaries, but with slightly different temporal pacing. Estimates of salinity and nutrient concentrations suggested that major hydrological patterns changed at approximately 5.5 and 3 kyrs BP. A highly temporally-resolved sediment core from Charlotte Harbor provided evidence for past changes that correspond with known climate records. Diatom assemblages had significant relationships with the three-year average index values of the Atlantic Multidecadal Oscillation and the El Niño Southern Oscillation. Assemblages that predicted low salinity and high total phosphorus also had the lowest dispersion and corresponded with some major storms in the known record, which together may provide a proxy for evidence of severe storms in the paleoecological record.
48

A study of changes in algal population density diversity and distribution and changes in physical and chemical characteristics of Lake Elsinore

Nyman, Robert H. 01 January 1986 (has links)
No description available.
49

Experimental Tests of Road Passage Systems for Reducing Road Mortalities of Freshwater Turtles

Yorks, Derek T 18 March 2015 (has links)
Roadways are a pervasive feature of northeastern landscapes and can be a significant source of mortality for turtles. Until recently, little has been known about the design requirements for successful under-road passages for turtles and other wildlife to move safely between bisected habitat patches. At outdoor laboratories, using a factorial experimental design, we examined movements in response to varying light levels, and barrier opacity for painted turtles (Chrysemys picta, n=833), Blanding’s turtles (Emydoidea blandingii, n=49), and spotted turtles (Clemmys guttata, n=49). Additionally, we examined tunnel size, tunnel entrance design, and artificial lighting for painted turtles only. All three species responded poorly to a 0% available light treatment. As the amount of natural light transmitted through the tops of tunnels increased, successful completion of the trials increased. Furthermore, turtles generally moved at a slower rate when traveling along a translucent barrier, compared to an opaque one. Our results indicate the importance of designing road passage structures for freshwater turtles that provide adequate tunnel lighting in combination with specific entrance designs that meet the goals of the project.
50

Ecology of Spring Fed Salt-Marshes

Bolen, Eric George 01 May 1962 (has links)
Any marsh is a distinctive land-forrm of varied interest. To the agriculturist it is wasteland to be reclaimed; to the naturalist, a habitat of aesthetic value. To the ecologist, however, a marsh represents a complexity of vegetation under the influences of many and often inseparable factors. It becomes a place of challenging study. There exists a notable lack of information treating the ecology of inland salt-marshes. Still less known are the ecological conditions imposed upon plant life in marshes arising from saline springs. The presence of such a wetland in western Utah afforded the opportunity to study salt-marsh vegetation in a highly specialized habitat. The study had two phases. First was a study of the vegetation. Data were secured from collections and study plots within each of the major marsh communities. General descriptions of other plant life were additionally compiled. It is not within the scope of this paper to discuss or rigidly define the requirements embraced in the use of "community" as a unit of vegetation. Sufficient references are available for those who wish to pursue the point. In this study, a community is a congregation of plants exhibiting differences in appearance and species composition from other plant congregations. Secondly, studies were directed to the influences of soil and water on the ecology of each community. Transects were used to investigate many of these relationships. Transition zones between communities were narrow and usually sharply delineated. Transects intersected ecotones of this sort; environmental differences which may have occurred in the few broader ecotones were assumed to be of equal magnitude but of more gradual rate of change . Relatively short transects thus adequately represented each community yet allowed collection of intensive data. Information and data were collected during a 5-week period in August and September 1959 and a 6-month period beginning in March 1960.

Page generated in 0.1214 seconds