Spelling suggestions: "subject:"test constitu"" "subject:"test conceitu""
1 |
Multi-scale characterization of deformation mechanisms of bulk polyamide 6 under tensile stretching below and above the glass transition / Caractérisation multi-échelle des mécanismes de déformation du polyamide 6 massif en traction au-dessus et au-dessous de sa transition vitreuseMillot, Coraline 07 April 2015 (has links)
Notre étude a porté sur la compréhension microscopique des mécanismes de déformation du polyamide 6 (PA6) à l’état massif. Par des traitements thermiques appropriés, on a obtenu un jeu d’échantillons présentant des microstructures semi-cristallines variées, avec différentes formes cristallographiques (allotropes : α, γ ou β), différents taux de cristallinité (de 24 à 35%), différentes périodes de l’empilement des lamelles cristallines (de 7 à 12nm), ceci pour deux masses moléculaires différentes. Les propriétés mécaniques en traction ont été caractérisées au-dessus et au-dessous de la transition vitreuse de la phase amorphe (Tg). Les différents matériaux présentent des différences notables de comportements. Le taux de cristallinité semble être le facteur prédominant au-dessus de Tg, mais d’autres facteurs sont à prendre en compte en dessous de Tg, comme la forme cristalline et la morphologie lamellaire (épaisseur et facteur de forme). Grâce à un dispositif expérimental fabriqué sur mesure, des essais de traction ont été suivis par diffusion des rayons X aux petits (SAXS) et grands angles (WAXS) sur la ligne D2AM, ESRF, pour caractériser les déformations à l’échelle des empilements lamellaires et à l’échelle de la maille cristalline. Dans les échantillons présentant principalement de la phase cristalline β, les lamelles tendent à s’orienter perpendiculairement à la direction de traction (TD). Ce mécanisme d’orientation local (que nous appelons « modèle de réseau de chaînes ») est induit par la transmission des contraintes par les chaînes amorphes reliant les lamelles cristallines adjacentes. L’allongement local est plus faible que l’allongement macroscopique dans les lamelles perpendiculaire à TD, ce qui implique que les lamelles inclinées doivent être cisaillées. De plus, la phase β se transforme en phase α aux fortes extensions. Dans les échantillons présentant principalement de la phase α (la plus rigide), au-dessus de Tg, dans le régime élastique, les chaînes tendent d’abord à s’orienter perpendiculairement à TD, ce qui implique que les lamelles s’orientent parallèlement à TD (« modèle de lamelles rigides »). Ensuite, dans le régime plastique, une majeure partie des lamelles se réoriente perpendiculairement à TD, comme dans le « modèle de réseau de chaînes », tandis qu’une fraction mineure reste orientée parallèlement à TD. Une morphologie fibrillaire fortement orientée est finalement obtenue pour tous les échantillons quelle que soit la température. / Mechanical properties of bulk polyamide 6 (PA6) have been studied in relation to microscopic deformation mechanisms. By applying various thermal treatments, sets of samples with different semi-crystalline microstructures, namely various crystalline allotropic forms (denoted α, γ and β) and different values of the crystallinity index (from 24 to 35%) and of the long period of the lamellar stacks (from 7 to 12 nm), have been obtained, for two different molecular masses. Mechanical properties have been measured in the linear (viscoelastic) and nonlinear (plastic) regimes below and above the glass transition of the amorphous phase (Tg). Differences of behavior have been observed depending on the microstructure. While the crystallinity index seems to be the predominant factor affecting the mechanical behavior above Tg, other structural parameters such as the crystalline form and the lamellar morphology (thickness and aspect ratio) have to be taken into account below Tg. Deformations at the scales of lamellar stacks and of the crystalline unit cell have been characterized by small and wide angle X-ray scattering (SAXS and WAXS) performed in-situ during tensile tests. In samples with predominantly β phase, lamellae tend to orient perpendicular to the tensile direction (TD). This orientation mechanism (which we denote as ‘Chain Network model’) is driven by the amorphous chains which transmit the stress between adjacent lamellae. The tensile strain in lamellar stacks perpendicular to TD is lower than the macroscopic tensile strain, which must be compensated by increased shear in inclined stacks. Also, at high extension ratios, the β phase transforms into α phase. In samples with predominantly α phase and above Tg, morphology changes are more complex. In a first step, chains orient perpendicular to TD, which implies that lamellar planes tend to orient parallel to TD, possibly due to their high aspect ratio (denoted as ‘Rigid Lamella’ model). In a second step, beyond the yield, a major fraction of crystallites then reorients normal to TD, i.e. chains themselves become parallel to TD, while a minor fraction remains oriented along TD. A highly oriented fibrillar morphology is ultimately obtained in all cases.
|
Page generated in 0.0458 seconds