• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 1
  • Tagged with
  • 22
  • 22
  • 11
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Représentation parcimonieuse et procédures de tests multiples : application à la métabolomique / Sparse representation and multiple testing procedures : application to metabolimics

Tardivel, Patrick 24 November 2017 (has links)
Considérons un vecteur gaussien Y de loi N (m,sigma²Idn) et X une matrice de dimension n x p avec Y observé, m inconnu, Sigma et X connus. Dans le cadre du modèle linéaire, m est supposé être une combinaison linéaire des colonnes de X. En petite dimension, lorsque n ≥ p et que ker (X) = 0, il existe alors un unique paramètre Beta* tel que m = X Beta* ; on peut alors réécrire Y sous la forme Y = X Beta* + Epsilon. Dans le cadre du modèle linéaire gaussien en petite dimension, nous construisons une nouvelle procédure de tests multiples contrôlant le FWER pour tester les hypothèses nulles Beta*i = 0 pour i appartient à [[1,p]]. Cette procédure est appliquée en métabolomique au travers du programme ASICS qui est disponible en ligne. ASICS permet d'identifier et de quantifier les métabolites via l'analyse des spectres RMN. En grande dimension, lorsque n < p on a ker (X) ≠ 0, ainsi le paramètre Beta* décrit précédemment n'est pas unique. Dans le cas non bruité lorsque Sigma = 0, impliquant que Y = m, nous montrons que les solutions du système linéaire d'équations Y = X Beta avant un nombre de composantes non nulles minimales s'obtiennent via la minimisation de la "norme" lAlpha avec Alpha suffisamment petit. / Let Y be a Gaussian vector distributed according to N (m,sigma²Idn) and X a matrix of dimension n x p with Y observed, m unknown, sigma and X known. In the linear model, m is assumed to be a linear combination of the columns of X In small dimension, when n ≥ p and ker (X) = 0, there exists a unique parameter Beta* such that m = X Beta*; then we can rewrite Y = Beta* + Epsilon. In the small-dimensional linear Gaussian model framework, we construct a new multiple testing procedure controlling the FWER to test the null hypotheses Beta*i = 0 for i belongs to [[1,p]]. This procedure is applied in metabolomics through the freeware ASICS available online. ASICS allows to identify and to qualify metabolites via the analyse of RMN spectra. In high dimension, when n < p we have ker (X) ≠ 0 consequently the parameter Beta* described above is no longer unique. In the noiseless case when Sigma = 0, implying thus Y = m, we show that the solutions of the linear system of equation Y = X Beta having a minimal number of non-zero components are obtained via the lalpha with alpha small enough.
22

Tests d’indépendance par bootstrap et permutation : étude asymptotique et non-asymptotique. Application en neurosciences / Tests of independence by bootstrap and permutation : an asymptotic and non-asymptotic study. Application to neurosciences.

Albert, Mélisande 16 November 2015 (has links)
Premièrement, nous construisons de tels tests basés sur des approches par bootstrap ou par permutation, et étudions leurs propriétés asymptotiques dans un cadre de processus ponctuels, à travers l'étude du comportement asymptotique des lois conditionnelles des statistiques de test bootstrappée et permutée, sous l'hypothèse nulle ainsi que toute alternative. Nous les validons en pratique par simulation et les comparons à des méthodes classiques en neurosciences. Ensuite, nous nous concentrons sur les tests par permutation, connus pour contrôler non-asymptotiquement leur niveau. Les p-valeurs basées sur la notion de coïncidences avec délai, sont implémentées dans une procédure de tests multiples, appelée méthode Permutation Unitary Events, pour détecter les synchronisations entre deux neurones. Nous validons la méthode par simulation avant de l'appliquer à de vraies données. Deuxièmement, nous étudions les propriétés non-asymptotiques des tests par permutation en termes de vitesse de séparation uniforme. Nous construisons une procédure de tests agrégés, basée sur du seuillage par ondelettes dans un cadre de variables aléatoires à densité. Nous déduisons d'une inégalité fondamentale de Talagrand, une nouvelle inégalité de concentration de type Bernstein pour des sommes permutées aléatoirement qui nous permet de majorer la vitesse de séparation uniforme sur des espaces de Besov faibles et d'en déduire que cette procédure semble être optimale et adaptative au sens du minimax. / On the one hand, we construct such tests based on bootstrap and permutation approaches. Their asymptotic performance are studied in a point process framework through the analysis of the asymptotic behavior of the conditional distributions of both bootstrapped and permuted test statistics, under the null hypothesis as well as under any alternative. A simulation study is performed verifying the usability of these tests in practice, and comparing them to existing classical methods in Neuroscience. We then focus on the permutation tests, well known for their non-asymptotic level properties. Their p-values, based on the delayed coincidence count, are implemented in a multiple testing procedure, called Permutation Unitary Events method, to detect the synchronization occurrences between two neurons. The practical validity of the method is verified on a simulation study before being applied on real data. On the other hand, the non-asymptotic performances of the permutation tests are studied in terms of uniform separation rates. A new aggregated procedure based on a wavelet thresholding method is developed in the density framework. Based on Talagrand's fundamental inequalities, we provide a new Bernstein-type concentration inequality for randomly permuted sums. In particular, it allows us to upper bound the uniform separation rate of the aggregated procedure over weak Besov spaces and deduce that this procedure seems to be optimal and adaptive in the minimax sens.

Page generated in 0.0697 seconds