Spelling suggestions: "subject:"iniform separation rate"" "subject:"niform separation rate""
1 |
Inférence non-paramétrique pour des interactions poissoniennes / Adaptive nonparametric inference for Poissonian interactionsSansonnet, Laure 14 June 2013 (has links)
L'objet de cette thèse est d'étudier divers problèmes de statistique non-paramétrique dans le cadre d'un modèle d'interactions poissoniennes. De tels modèles sont, par exemple, utilisés en neurosciences pour analyser les interactions entre deux neurones au travers leur émission de potentiels d'action au cours de l'enregistrement de l'activité cérébrale ou encore en génomique pour étudier les distances favorisées ou évitées entre deux motifs le long du génome. Dans ce cadre, nous introduisons une fonction dite de reproduction qui permet de quantifier les positions préférentielles des motifs et qui peut être modélisée par l'intensité d'un processus de Poisson. Dans un premier temps, nous nous intéressons à l'estimation de cette fonction que l'on suppose très localisée. Nous proposons une procédure d'estimation adaptative par seuillage de coefficients d'ondelettes qui est optimale des points de vue oracle et minimax. Des simulations et une application en génomique sur des données réelles provenant de la bactérie E. coli nous permettent de montrer le bon comportement pratique de notre procédure. Puis, nous traitons les problèmes de test associés qui consistent à tester la nullité de la fonction de reproduction. Pour cela, nous construisons une procédure de test optimale du point de vue minimax sur des espaces de Besov faibles, qui a également montré ses performances du point de vue pratique. Enfin, nous prolongeons ces travaux par l'étude d'une version discrète en grande dimension du modèle précédent en proposant une procédure adaptative de type Lasso. / The subject of this thesis is the study of some adaptive nonparametric statistical problems in the framework of a Poisson interactions model. Such models are used, for instance, in neurosciences to analyze interactions between two neurons through their spikes emission during the recording of the brain activity or in genomics to study favored or avoided distances between two motifs along a genome. In this setting, we naturally introduce a so-called reproduction function that allows to quantify the favored positions of the motifs and which is considered as the intensity of a Poisson process. Our first interest is the estimation of this function assumed to be well localized. We propose a data-driven wavelet thresholding estimation procedure that is optimal from oracle and minimax points of view. Simulations and an application to genomic data from the bacterium E. coli allow us to show the good practical behavior of our procedure. Then, we deal with associated problems on tests which consist in testing the nullity of the reproduction function. For this purpose, we build a minimax optimal testing procedure on weak Besov spaces and we provide some simulations showing good practical performances of our procedure. Finally, we extend this work with the study of a high-dimensional discrete setting of our previous model by proposing an adaptive Lasso-type procedure.
|
2 |
Tests d’indépendance par bootstrap et permutation : étude asymptotique et non-asymptotique. Application en neurosciences / Tests of independence by bootstrap and permutation : an asymptotic and non-asymptotic study. Application to neurosciences.Albert, Mélisande 16 November 2015 (has links)
Premièrement, nous construisons de tels tests basés sur des approches par bootstrap ou par permutation, et étudions leurs propriétés asymptotiques dans un cadre de processus ponctuels, à travers l'étude du comportement asymptotique des lois conditionnelles des statistiques de test bootstrappée et permutée, sous l'hypothèse nulle ainsi que toute alternative. Nous les validons en pratique par simulation et les comparons à des méthodes classiques en neurosciences. Ensuite, nous nous concentrons sur les tests par permutation, connus pour contrôler non-asymptotiquement leur niveau. Les p-valeurs basées sur la notion de coïncidences avec délai, sont implémentées dans une procédure de tests multiples, appelée méthode Permutation Unitary Events, pour détecter les synchronisations entre deux neurones. Nous validons la méthode par simulation avant de l'appliquer à de vraies données. Deuxièmement, nous étudions les propriétés non-asymptotiques des tests par permutation en termes de vitesse de séparation uniforme. Nous construisons une procédure de tests agrégés, basée sur du seuillage par ondelettes dans un cadre de variables aléatoires à densité. Nous déduisons d'une inégalité fondamentale de Talagrand, une nouvelle inégalité de concentration de type Bernstein pour des sommes permutées aléatoirement qui nous permet de majorer la vitesse de séparation uniforme sur des espaces de Besov faibles et d'en déduire que cette procédure semble être optimale et adaptative au sens du minimax. / On the one hand, we construct such tests based on bootstrap and permutation approaches. Their asymptotic performance are studied in a point process framework through the analysis of the asymptotic behavior of the conditional distributions of both bootstrapped and permuted test statistics, under the null hypothesis as well as under any alternative. A simulation study is performed verifying the usability of these tests in practice, and comparing them to existing classical methods in Neuroscience. We then focus on the permutation tests, well known for their non-asymptotic level properties. Their p-values, based on the delayed coincidence count, are implemented in a multiple testing procedure, called Permutation Unitary Events method, to detect the synchronization occurrences between two neurons. The practical validity of the method is verified on a simulation study before being applied on real data. On the other hand, the non-asymptotic performances of the permutation tests are studied in terms of uniform separation rates. A new aggregated procedure based on a wavelet thresholding method is developed in the density framework. Based on Talagrand's fundamental inequalities, we provide a new Bernstein-type concentration inequality for randomly permuted sums. In particular, it allows us to upper bound the uniform separation rate of the aggregated procedure over weak Besov spaces and deduce that this procedure seems to be optimal and adaptive in the minimax sens.
|
Page generated in 0.1403 seconds