• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical and magnetic properties of organic semiconductors : electrical conductivity and electron spin resonance studies of semiconducting, organic, charge transfer salts

Ahmad, Muhammad Munir January 1978 (has links)
Charge transfer salts of Tetracyanoquinodimethane (TCNQ) were synthesised and their electrical and magnetic properties were investigated. These salts show unusual electrical and magnetic behaviour in contrast to conventional organic compounds. These salts have crystal structures which in general consist of TCNQ radical ions stacked in chains, isolated from each other by the diamagnetic cations. They are thus regarded as "one-dimensional" electrical and magnetic systems. The ESR spectra of these salts are attributed to triplet excitons showing that the spin-spin and electronelectron correlation effects are important. In the ESR spectra (Chapter III) of some TCNQ salts dipolar splitting is observed confirming the spin-spin interaction. These triplet excitons are regarded as bound electron-hole pairs. The experimentally determined dipolar splitting tensors are presented in Chapter III and the intensity data in Chapter IV. A large number of fine structure lines are observed in the ESR spectra of Pyridinium-TCNQ and 4-Aminopyridinium-TCNQ apart from regular triplet exciton lines (Chapter III). These lines are attributed to the trapping of excitons on an extended formula finit (TCNQ2 )n. In Chapter IV the temperature dependent magnetic susceptibilities are discussed in terms of Heisenberg antiferromagnetism and Pauli paramagnetism. In Chapter V temperature dependent behaviour of electrical conductivity is discussed in terms of an exciton band model, the lattice structure of the salts and one-dimensional lattice consisting of defects giving rise to high and low conducting segments. Low temperature electrical and magnetic phases are discussed (Chapters IV and VII) in terms of a band and hopping mechanisms.In Chapter VI self consistent field calculations are made with reference to the tight binding one electron band theory using simplified Roothaan equations considering CNDO approximations. Theoretical results are related to experimental band gaps, spinspin interactions and charge alteration.
2

Estudo de complexos de ferro-cyclam com ligantes carboxilados e polinitrilados / Study of complexes of iron-cyclam with carboxylate ligants and polinitrilate

Daniel de Lima Pontes 26 June 2006 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / O objetivo deste trabalho à contribuir com o desenvolvimento da quÃmica do sistema Fe-cyclam, atravÃs da sÃntese e caracterizaÃÃo de novos complexos metÃlicos deste sistema com duas classes de ligantes: carboxilados (oxalato e acetato) e ligantes polinitrilados (7,7,8,8 âtetracianoquinodimetano e tetracianoetileno ). AtravÃs da caracterizaÃÃo do complexo cis-[Fe(cyclam)ox]PF6 por infravermelho foi possÃvel identificar que o ligante oxalato encontra-se coordenado ao centro metÃlico de forma bidentada, bem como garantir que o ligante macrocÃclico cyclam continua na esfera de coordenaÃÃo do metal. O potencial formal de meia onda do processo redox Fe3+/2+ do complexo foi observado em â39mV vs Ag/AgCl. O potencial observado encontra-se deslocado 240mV para menores valores em relaÃÃo ao complexo precursor, favorecendo ao estado de oxidaÃÃo Fe3+ do metal, devido ao maior efeito σ doador do ligante oxalato frente aos cloretos. O espectro UV-Vis do complexo cisâ[Fe(cyclam)ox]PF6, em meio aquoso, apresentou trÃs bandas: 229nm, atribuÃda a uma transiÃÃo intraligante do cyclam, 293nm e 357nm, atribuÃdas à transferÃncia de carga de orbitais π do ligante para o orbitais dπ* do metal. Os experimentos fotoquÃmicos demonstraram a grande sensibilidade do complexo à luz, sendo observado a labilizaÃÃo do ligante oxalato da esfera de coordenaÃÃo do metal, e a reatividade da espÃcie formada atravÃs da obtenÃÃo do complexo trans-[Fe(cyclam)acet2]PF6, AtravÃs do estudo de Raio-X, obtido a partir do cristal do complexo trans-[Fe(cyclam)acet2]PF6, foi possÃvel comprovar o modo de coordenaÃÃo das duas molÃculas de acetato na posiÃÃo trans, bem como a identificaÃÃo da disposiÃÃo do cyclam no plano da molÃcula atravÃs de um arranjo conformacional trans-III. Os espectros no infravermelho dos complexos cis - [Fe(cyclam)(TCNX)Cl]Cl, onde TCNX representa os ligantes TCNQ ou TCNE, apresentaram um maior nÃmero de bandas referentes aos estiramentos CN, comparativamente aos ligantes livres, confirmando a alteraÃÃo da simetria do ligante causada pela coordenaÃÃo do metal. Com base nos deslocamentos destas freqÃÃncias para menores valores, comparativamente ao ligante livre, foi possÃvel identificar que os ligantes TCNQ e TCNE estÃo coordenados em sua forma radicalar, estado de oxidaÃÃo â1, sugerindo assim a ocorrÃncia de um processo de transferÃncia de elÃtrons do centro metÃlico, previamente reduzido (Fe2+), para os ligantes TCNX. Os potenciais redox dos Ãtomos de ferro, nos complexos com os ligantes polinitrialados TCNQ (693mV vs ENH) e TCNE (854mV vs ENH), foram deslocados para potenciais mais positivos, comparativamente ao observado no complexo precursor cis-[Fe(cyclam)Cl2]Cl (405mV vs ENH), indicando assim um forte deslocamento de densidade eletrÃnica dπ para os orbitais de simetria π dos ligantes TCNX. Os processos centrados nos ligantes coordenados ficaram mais prÃximos do que nos ligantes livres, indicando uma diminuiÃÃo na barreira de transferÃncia de elÃtrons, que segundos dados da literatura leva a uma melhor conduÃÃo elÃtrica. Os espectros eletrÃnicos dos complexos, em meio aquoso, apresentaram uma banda localizada em baixa energia, atribuÃda a transferÃncias de carga do tipo LMCT dos orbitais pπ das molÃculas de TCNX, para os orbitais dπ* do Ãon Fe3+. No complexo com o ligante TCNQ, esta banda aparece em 764nm e no complexo com o ligante TCNE, em 861nm. Observa-se ainda nos dois complexos a presenÃa das bandas referentes Ãs transiÃÃes LMCT dos cloretos para o Ãon Fe3+ em regiÃes muito prÃximas, em 557 no complexo com TCNE e em 568nm no complexo com TCNQ. A presenÃa desta banda novamente sugere a presenÃa do Ferro no estado oxidado (Fe+3). / The main objective of this work is to contribute with the chemistry of the system Fe-Cyclam through the synthesis and characterization of complexes with carboxylate ligants, acetate and oxalate, and polinitrilate ligands, 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE). The infrared spectra of the cis-[Fe(cyclam)ox]PF6 complex allowed to identify the coordination of the oxalate ligand to the iron metal in a bidentate mode as well as to suggest the presence of the macrocycle in the coordination sphere of the metal. The redox potential of the complex was observed at â39mV vs Ag/AgCl. The potential is dislocated 240mV for more positive potential when compared to that observed for the precursor complex cis-[Fe(cyclamCl2]Cl. This effect can be attributed to the stronger σ effect of the oxalate ligand when compared to the chlorine. The UV-Vis spectra of the complex, presented three bands: 229nm, attributed to a cyclam intraligand transition and the bands 293nm and 357nm, referring to ligand to metal electronic transfer from π orbitals of the oxalate to dπ* of the metal. The photochemical experiments proved the great sensibility of the complex to the light presence, being observed the reactivity effect of the complex formed after the light exposition by the formation of the trans-[Fe(cyclam)acet2]PF6 complex. Through the Ray-X obtained of the crystal of the trans-[Fe(cyclam)acet2]PF6 complex was possible to identify the coordination of two molecules of acetate at the trans position, as well as to identify the disposition of the cyclam ligand on the plane in a trans-III arrange. The infrared spectrum of the complexes cis - [Fe(cyclam)(TCNX)Cl]Cl, where the TCNX represent the ligands TCNQ and TCNE, present a great number of bands referring to the νCN, when compared with the ligands not coordinated, confirming the symetry changed induced by the metal coordination. Through the wavenumber variation of these bands was possible to identify that the TCNQ and TCNE ligands are coordinated in your radical way, oxidation state â1, suggestion this way the occurrence of a electron transfer from the iron, previously reduced (Fe+2), to the TCNX ligands. The redox potentials of the iron metals in the complexes with the polinitrilate ligands TCNQ (693mV vs ENH) and TCNE (854mV vs ENH) were dislocated for more positive potentials, when compared to the cis-[Fe(cyclam)Cl2]Cl precursor complex (405mV vs ENH), indicating the occurrence of an electronic density transfer to the TCNX molecules. The two potentials of the ligands on the complexes were closer than the ligands not coordinated, this approximation of the potential indicate a decrease of the inner electron transfer. The electronic spectra of the complexes, showed bands in the low energy region, attributed to a charge transfer LMCT, from the TCNX pπ orbital to the metal dπ* orbital. In the cis-[Fe(cyclam)(TCNQ)Cl]Cl complex, the band was observed at 764nm while in the complex with the TCNE ligand this band was observed at 861nm. Also, the complexes presented bands at 557nm (TCNE complex) and 568nm (TCNQ complex)referring to the LMCT transitions from the chlorine atoms to the iron metal reinforcing the assignment of the (Fe+3) oxidation state for the metal center.
3

Electrical and magnetic properties of organic semiconductors: Electrical conductivity and electron spin resonance studies of semiconducting, organic, charge transfer salts.

Ahmad, Muhammad M. January 1978 (has links)
Charge transfer salts of Tetracyanoquinodimethane (TCNQ) were synthesised and their electrical and magnetic properties were investigated. These salts show unusual electrical and magnetic behaviour in contrast to conventional organic compounds. These salts have crystal structures which in general consist of TCNQ radical ions stacked in chains, isolated from each other by the diamagnetic cations. They are thus regarded as "one-dimensional" electrical and magnetic systems. The ESR spectra of these salts are attributed to triplet excitons showing that the spin-spin and electronelectron correlation effects are important. In the ESR spectra (Chapter III) of some TCNQ salts dipolar splitting is observed confirming the spin-spin interaction. These triplet excitons are regarded as bound electron-hole pairs. The experimentally determined dipolar splitting tensors are presented in Chapter III and the intensity data in Chapter IV. A large number of fine structure lines are observed in the ESR spectra of Pyridinium-TCNQ and 4-Aminopyridinium-TCNQ apart from regular triplet exciton lines (Chapter III). These lines are attributed to the trapping of excitons on an extended formula finit (TCNQ2 )n. In Chapter IV the temperature dependent magnetic susceptibilities are discussed in terms of Heisenberg antiferromagnetism and Pauli paramagnetism. In Chapter V temperature dependent behaviour of electrical conductivity is discussed in terms of an exciton band model, the lattice structure of the salts and one-dimensional lattice consisting of defects giving rise to high and low conducting segments. Low temperature electrical and magnetic phases are discussed (Chapters IV and VII) in terms of a band and hopping mechanisms.In Chapter VI self consistent field calculations are made with reference to the tight binding one electron band theory using simplified Roothaan equations considering CNDO approximations. Theoretical results are related to experimental band gaps, spinspin interactions and charge alteration.

Page generated in 0.1151 seconds