Spelling suggestions: "subject:"text arecognition"" "subject:"text 2recognition""
51 |
Layout Analysis for Handwritten Documents. A Probabilistic Machine Learning ApproachQuirós Díaz, Lorenzo 21 March 2022 (has links)
[ES] El Análisis de la Estructura de Documentos (Document Layout Analysis), aplicado a documentos manuscritos, tiene como objetivo obtener automáticamente la estructura intrínseca de dichos documentos. Su desarrollo como campo de investigación se extiende desde los sistemas de segmentación de caracteres desarrollados a principios de la década de 1960 hasta los sistemas complejos desarrollados en la actualidad, donde el objetivo es analizar estructuras de alto nivel (líneas de texto, párrafos, tablas, etc.) y la relación que existe entre ellas.
Esta tesis, en primer lugar, define el objetivo del Análisis de la Estructura de Documentos desde una perspectiva probabilística. A continuación, la complejidad del problema se reduce a un conjunto de subproblemas complementarios bien conocidos, de manera que pueda ser gestionado por medio de recursos informáticos modernos. Concretamente se abordan tres de los principales problemas del Análisis de la Estructura de Documentos siguiendo una formulación probabilística. Específicamente se aborda la Detección de Línea Base (Baseline Detection), la Segmentación de Regiones (Region Segmentation) y la Determinación del Orden de Lectura (Reading Order Determination).
Uno de los principales aportes de esta tesis es la formalización de los problemas de Detección de Línea Base y Segmentación de Regiones bajo un marco probabilístico, donde ambos problemas pueden ser abordados por separado o de forma integrada por los modelos propuestos. Este último enfoque ha demostrado ser muy útil para procesar grandes colecciones de documentos con recursos informáticos limitados.
Posteriormente se aborda el subproblema de la Determinación del Orden de Lectura, que es uno de los subproblemas más importantes, aunque subestimados, del Análisis de la Extructura de Documentos, ya que es el nexo que permite convertir los datos extraídos de los sistemas de Reconocimiento Automático de Texto (Automatic Text Recognition Systems) en información útil. Por lo tanto, en esta tesis abordamos y formalizamos la Determinación del Orden de Lectura como un problema de clasificación probabilística por pares. Además, se proponen dos diferentes algoritmos de decodificación que reducen la complejidad computacional del problema.
Por otra parte, se utilizan diferentes modelos estadísticos para representar la distribución de probabilidad sobre la estructura de los documentos. Estos modelos, basados en Redes Neuronales Artificiales (desde un simple Perceptrón Multicapa hasta complejas Redes Convolucionales y Redes de Propuesta de Regiones), se estiman a partir de datos de entrenamiento utilizando algoritmos de aprendizaje automático supervisados.
Finalmente, todas las contribuciones se evalúan experimentalmente, no solo en referencias académicas estándar, sino también en colecciones de miles de imágenes. Se han considerado documentos de texto manuascritos y documentos musicales manuscritos, ya que en conjunto representan la mayoría de los documentos presentes en bibliotecas y archivos. Los resultados muestran que los métodos propuestos son muy precisos y versátiles en una amplia gama de documentos manuscritos. / [CA] L'Anàlisi de l'Estructura de Documents (Document Layout Analysis), aplicada a documents manuscrits, pretén automatitzar l'obtenció de l'estructura intrínseca d'un document. El seu desenvolupament com a camp d'investigació comprén des dels sistemes de segmentació de caràcters creats al principi dels anys 60 fins als complexos sistemes de hui dia que busquen analitzar estructures d'alt nivell (línies de text, paràgrafs, taules, etc) i les relacions entre elles.
Aquesta tesi busca, primer de tot, definir el propòsit de l'anàlisi de l'estructura de documents des d'una perspectiva probabilística. Llavors, una vegada reduïda la complexitat del problema, es processa utilitzant recursos computacionals moderns, per a dividir-ho en un conjunt de subproblemes complementaris més coneguts. Concretament, tres dels principals subproblemes de l'Anàlisi de l'Estructura de Documents s'adrecen seguint una formulació probabilística: Detecció de la Línia Base Baseline Detection), Segmentació de Regions (Region Segmentation) i Determinació de l'Ordre de Lectura (Reading Order Determination).
Una de les principals contribucions d'aquesta tesi és la formalització dels problemes de la Detecció de les Línies Base i dels de Segmentació de Regions en un entorn probabilístic, sent els dos problemes tractats per separat o integrats en conjunt pels models proposats. Aquesta última aproximació ha demostrat ser de molta utilitat per a la gestió de grans col·leccions de documents amb uns recursos computacionals limitats.
Posteriorment s'ha adreçat el subproblema de la Determinació de l'Ordre de Lectura, sent un dels subproblemes més importants de l'Anàlisi d'Estructures de Documents, encara així subestimat, perquè és el nexe que permet transformar en informació d'utilitat l'extracció de dades dels sistemes de reconeixement automàtic de text. És per això que el fet de determinar l'ordre de lectura s'adreça i formalitza com un problema d'ordenació probabilística per parells. A més, es proposen dos algoritmes descodificadors diferents que reducix la complexitat computacional del
problema.
Per altra banda s'utilitzen diferents models estadístics per representar la distribució probabilística sobre l'estructura dels documents. Aquests models, basats en xarxes neuronals artificials (des d'un simple perceptron multicapa fins a complexes xarxes convolucionals i de propostes de regió), s'estimen a partir de dades d'entrenament mitjançant algoritmes d'aprenentatge automàtic supervisats.
Finalment, totes les contribucions s'avaluen experimentalment, no només en referents acadèmics estàndard, sinó també en col·leccions de milers d'imatges. S'han considerat documents de text manuscrit i documents musicals manuscrits, ja que representen la majoria de documents presents a biblioteques i arxius. Els resultats mostren que els mètodes proposats són molt precisos i versàtils en una àmplia gamma de documents manuscrits. / [EN] Document Layout Analysis, applied to handwritten documents, aims to automatically obtain the intrinsic structure of a document. Its development as a research field spans from the character segmentation systems developed in the early 1960s to the complex systems designed nowadays, where the goal is to analyze high-level structures (lines of text, paragraphs, tables, etc) and the relationship between them.
This thesis first defines the goal of Document Layout Analysis from a probabilistic perspective. Then, the complexity of the problem is reduced, to be handled by modern computing resources, into a set of well-known complementary subproblems. More precisely, three of the main subproblems of Document Layout Analysis are addressed following a probabilistic formulation, namely Baseline Detection, Region Segmentation and Reading Order Determination.
One of the main contributions of this thesis is the formalization of Baseline Detection and Region Segmentation problems under a probabilistic framework, where both problems can be handled separately or in an integrated way by the proposed models. The latter approach is proven to be very useful to handle large document collections under restricted computing resources.
Later, the Reading Order Determination subproblem is addressed. It is one of the most important, yet underestimated, subproblem of Document Layout Analysis, since it is the bridge that allows us to convert the data extracted from Automatic Text Recognition systems into useful information. Therefore, Reading Order Determination is addressed and formalized as a pairwise probabilistic sorting problem. Moreover, we propose two different decoding algorithms that reduce the computational complexity of the problem.
Furthermore, different statistical models are used to represent the probability distribution over the structure of the documents. These models, based on Artificial Neural Networks (from a simple Multilayer Perceptron to complex Convolutional and Region Proposal Networks), are estimated from training data using supervised Machine Learning algorithms.
Finally, all the contributions are experimentally evaluated, not only on standard academic benchmarks but also in collections of thousands of images. We consider handwritten text documents and handwritten musical documents as they represent the majority of documents in libraries and archives. The results show that the proposed methods are very accurate and versatile in a very wide range of handwritten documents. / Quirós Díaz, L. (2022). Layout Analysis for Handwritten Documents. A Probabilistic Machine Learning Approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181483
|
52 |
A Probabilistic Formulation of Keyword SpottingPuigcerver I Pérez, Joan 18 February 2019 (has links)
[ES] La detección de palabras clave (Keyword Spotting, en inglés), aplicada a documentos de texto manuscrito, tiene como objetivo recuperar los documentos, o partes de ellos, que sean relevantes para una cierta consulta (query, en inglés), indicada por el usuario, entre una gran colección de documentos. La temática ha recogido un gran interés en los últimos 20 años entre investigadores en Reconocimiento de Formas (Pattern Recognition), así como bibliotecas y archivos digitales.
Esta tesis, en primer lugar, define el objetivo de la detección de palabras clave a partir de una perspectiva basada en la Teoría de la Decisión y una formulación probabilística adecuada. Más concretamente, la detección de palabras clave se presenta como un caso particular de Recuperación de la Información (Information Retrieval), donde el contenido de los documentos es desconocido, pero puede ser modelado mediante una distribución de probabilidad. Además, la tesis también demuestra que, bajo las distribuciones de probabilidad correctas, el marco de trabajo desarrollada conduce a la solución óptima del problema, según múltiples medidas de evaluación utilizadas tradicionalmente en el campo.
Más tarde, se utilizan distintos modelos estadísticos para representar las distribuciones necesarias: Redes Neuronales Recurrentes o Modelos Ocultos de Markov. Los parámetros de estos son estimados a partir de datos de entrenamiento, y las respectivas distribuciones son representadas mediante Transductores de Estados Finitos con Pesos (Weighted Finite State Transducers).
Con el objetivo de hacer que el marco de trabajo sea práctico en grandes colecciones de documentos, se presentan distintos algoritmos para construir índices de palabras a partir de modelos probabilísticos, basados tanto en un léxico cerrado como abierto. Estos índices son muy similares a los utilizados por los motores de búsqueda tradicionales.
Además, se estudia la relación que hay entre la formulación probabilística presentada y otros métodos de gran influencia en el campo de la detección de palabras clave, destacando cuáles son las limitaciones de los segundos.
Finalmente, todas la aportaciones se evalúan de forma experimental, no sólo utilizando pruebas académicas estándar, sino también en colecciones con decenas de miles de páginas provenientes de manuscritos históricos. Los resultados muestran que el marco de trabajo presentado permite construir sistemas de detección de palabras clave muy rápidos y precisos, con una sólida base teórica. / [CA] La detecció de paraules clau (Keyword Spotting, en anglès), aplicada a documents de text manuscrit, té com a objectiu recuperar els documents, o parts d'ells, que siguen rellevants per a una certa consulta (query, en anglès), indicada per l'usuari, dintre d'una gran col·lecció de documents. La temàtica ha recollit un gran interés en els últims 20 anys entre investigadors en Reconeixement de Formes (Pattern Recognition), així com biblioteques i arxius digitals.
Aquesta tesi defineix l'objectiu de la detecció de paraules claus a partir d'una perspectiva basada en la Teoria de la Decisió i una formulació probabilística adequada. Més concretament, la detecció de paraules clau es presenta com un cas concret de Recuperació de la Informació (Information Retrieval), on el contingut dels documents és desconegut, però pot ser modelat mitjançant una distribució de probabilitat. A més, la tesi també demostra que, sota les distribucions de probabilitat correctes, el marc de treball desenvolupat condueix a la solució òptima del problema, segons diverses mesures d'avaluació utilitzades tradicionalment en el camp.
Després, diferents models estadístics s'utilitzen per representar les distribucions necessàries: Xarxes Neuronal Recurrents i Models Ocults de Markov. Els paràmetres d'aquests són estimats a partir de dades d'entrenament, i les corresponents distribucions són representades mitjançant Transductors d'Estats Finits amb Pesos (Weighted Finite State Transducers).
Amb l'objectiu de fer el marc de treball útil per a grans col·leccions de documents, es presenten distints algorismes per construir índexs de paraules a partir dels models probabilístics, tan basats en un lèxic tancat com en un obert. Aquests índexs són molt semblants als utilitzats per motors de cerca tradicionals.
A més a més, s'estudia la relació que hi ha entre la formulació probabilística presentada i altres mètodes de gran influència en el camp de la detecció de paraules clau, destacant algunes limitacions dels segons.
Finalment, totes les aportacions s'avaluen de forma experimental, no sols utilitzant proves acadèmics estàndard, sinó també en col·leccions amb desenes de milers de pàgines provinents de manuscrits històrics. Els resultats mostren que el marc de treball presentat permet construir sistemes de detecció de paraules clau molt acurats i ràpids, amb una sòlida base teòrica. / [EN] Keyword Spotting, applied to handwritten text documents, aims to retrieve the documents, or parts of them, that are relevant for a query, given by the user, within a large collection of documents. The topic has gained a large interest in the last 20 years among Pattern Recognition researchers, as well as digital libraries and archives.
This thesis, first defines the goal of Keyword Spotting from a Decision Theory perspective. Then, the problem is tackled following a probabilistic formulation. More precisely, Keyword Spotting is presented as a particular instance of Information Retrieval, where the content of the documents is unknown, but can be modeled by a probability distribution. In addition, the thesis also proves that, under the correct probability distributions, the framework provides the optimal solution, under many of the evaluation measures traditionally used in the field.
Later, different statistical models are used to represent the probability distribution over the content of the documents. These models, Hidden Markov Models or Recurrent Neural Networks, are estimated from training data, and the corresponding distributions over the transcripts of the images can be efficiently represented using Weighted Finite State Transducers.
In order to make the framework practical for large collections of documents, this thesis presents several algorithms to build probabilistic word indexes, using both lexicon-based and lexicon-free models. These indexes are very similar to the ones used by traditional search engines.
Furthermore, we study the relationship between the presented formulation and other seminal approaches in the field of Keyword Spotting, highlighting some limitations of the latter. Finally, all the contributions are evaluated experimentally, not only on standard academic benchmarks, but also on collections including tens of thousands of pages of historical manuscripts. The results show that the proposed framework and algorithms allow to build very accurate and very fast Keyword Spotting systems, with a solid underlying theory. / Puigcerver I Pérez, J. (2018). A Probabilistic Formulation of Keyword Spotting [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/116834
|
Page generated in 0.0814 seconds