• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 42
  • 17
  • 11
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 46
  • 41
  • 35
  • 32
  • 26
  • 24
  • 22
  • 20
  • 17
  • 17
  • 16
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Shape-Tailored Features and their Application to Texture Segmentation

Khan, Naeemullah 04 1900 (has links)
Texture Segmentation is one of the most challenging areas of computer vision. One reason for this difficulty is the huge variety and variability of textures occurring in real world, making it very difficult to quantitatively study textures. One of the key tools used for texture segmentation is local invariant descriptors. Texture consists of textons, the basic building block of textures, that may vary by small nuisances like illumination variation, deformations, and noise. Local invariant descriptors are robust to these nuisances making them beneficial for texture segmentation. However, grouping dense descriptors directly for segmentation presents a problem: existing descriptors aggregate data from neighborhoods that may contain different textured regions, making descriptors from these neighborhoods difficult to group, leading to significant errors in segmentation. This work addresses this issue by proposing dense local descriptors, called Shape-Tailored Features, which are tailored to an arbitrarily shaped region, aggregating data only within the region of interest. Since the segmentation, i.e., the regions, are not known a-priori, we propose a joint problem for Shape-Tailored Features and the regions. We present a framework based on variational methods. Extensive experiments on a new large texture dataset, which we introduce, show that the joint approach with Shape-Tailored Features leads to better segmentations over the non-joint non Shape-Tailored approach, and the method out-performs existing state-of-the-art.
22

A comparison of archaic and Mississippian subsistence strategies utilizing dental microwear texture analysis

Henson, Tracie L. January 2013 (has links)
Throughout the past, bioarchaeologists have been concerned with identifying subsistence strategies of past populations and when subsistence strategies have transitioned from foraging to agriculture practices. Specifically, one area of major concentration has been examining the transition from foraging to agriculture in the southeast of the present day United States. The present study examines the transition of subsistence practices in prehistoric Tennessee utilizing dental microwear texture analysis. This study examined a total of 49 individuals from Archaic and Mississippian sites. These were compared temporally by comparing Archaic microwear signatures to Mississippian microwear signatures, and geographically, through the comparison of each site in relation to its geographic location. Non-parametric Mann-Whitney U tests were utilized to determine if statistical significant differences existed between the Archaic and Mississippian groups analyzed, and to determine if statistical significant differences existed based on geographic location. Due to the small sample size utilized in the study, it must be stated that the results are preliminary and further testing using dental microwear texture analysis needs to be undertaken in order to better understand the results.
23

Influence of Freezing and Thawing Methods on Textural Quality of Thawed FrozenPotato Slices

Wickramasinghe, Anita Elizabeth 30 December 2014 (has links)
No description available.
24

Application of Heuristic Optimization Techniques in Land Evaluation

Kovalskyy, Valeriy January 2004 (has links)
No description available.
25

Staging Liver Fibrosis with Statistical Observers

Brand, Jonathan Frieman January 2016 (has links)
Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.
26

Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver

Brand, Jonathan F., Furenlid, Lars R., Altbach, Maria I., Galons, Jean-Philippe, Bhattacharyya, Achyut, Sharma, Puneet, Bhattacharyya, Tulshi, Bilgin, Ali, Martin, Diego R. 21 July 2016 (has links)
Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination; however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed human ex vivo liver samples as phantoms that mimic the textural contrast of in vivo Gd-MRI. We have developed a local texture analysis that is applied to phantom images, and the results are used to train model observers to detect HF. The performance of the observer is assessed with the area-under-the-receiver-operator-characteristic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen as optimal for the task of detecting HF. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
27

Aplicação de técnicas de processamento de imagens para diferenciação do greening de outras pragas / Application of image processing techniques to differentiate greening from other pests

Ribeiro, Patricia Pedroso Estevam 07 May 2014 (has links)
O greening ou Huanglongbing (HLB) é uma das mais graves doenças dos citros presentes nos pomares do Brasil. Causada pela bactéria Candidatus Liberibacter spp, é transmitida pelo inseto psilídeo Diaphorina citri, que ao se alimentar de uma planta doente transmite a doença às demais plantas. O greening apresenta como sintoma, manchas amareladas nas folhas, muitas vezes confundidas com deficiências nutricionais. A erradicação da planta e o controle do inseto transmissor são as únicas formas de prevenção para evitar a sua propagação. Este trabalho teve por objetivo avaliar uma metodologia baseada em segmentação por cor e outra baseada em análise de textura para avaliação de folhas de citros sintomáticas, identificando se estão contaminadas com o greening ou outras doenças e deficiências nutricionais. Foram fornecidas pelo grupo FISHER, 324 amostras de folhas cítricas, contendo folhas com doenças (greening, CVC e rubelose) e deficiências nutricionais (manganês, magnésio e zinco). As folhas foram digitalizadas por um scanner de mesa, com duas resoluções, utilizando somente a parte frontal da folha. Foram montados três bancos de imagens. Os resultados gerados com a metodologia baseada em segmentação por cor utilizando RNA PMC, mostraram que essa metodologia não é eficiente. Na metodologia baseada na análise por textura foram avaliados os descritores LBP, LFP e os de Haralick. Para estes descritores foram extraídas amostras por folha e por quadrantes das folhas nos canais de cores vermelho e verde e amostras em níveis de cinza. Os resultados gerados pelos descritores foram classificados pela distância &#9672 e pelos algoritmos IBK e RNA PMC do toolbox Weka. Os melhores resultados foram para os descritores LBP e LFP-s para distância &#9672, com valores de sensibilidade acima de 97% e 93%, respectivamente, e para o LBP com o algoritmo IBK, com valores de sensibilidade acima de 98,5%. Os resultados obtidos evidenciam que o descritor LBP é o mais eficiente seguido pelo LFP-s na diferenciação do greening das outras pragas. / The greening or Huanglongbing (HLB) is one of the most serious diseases of citrus orchards present in Brazil. HLB is caused by the bacterium Candidatus Liberibacter spp, it is transmitted by the psyllid insect (Diaphorina citri) that, when feeding on a diseased plant, it transmits the disease to other plants. One of the symptoms of the greening are yellowish spots on the leaves, often confused with nutritional deficiencies. The eradication of plants and control of insect are the only forms of prevention. This work aims to evaluate two methodologies: one based on color segmentation and the other based on texture analysis for assessment of symptomatic citrus leaves, identifying whether they are infected with greening and other diseases and nutritional deficiencies. A number of 324 samples of citrus leaves were provided by FISHER group, infected with diseases (greening, CVC, rubelose) and nutritional deficiencies ( manganese, magnesium, zinc) . The leaves were acquired by a flatbed scanner with two different resolutions, using only the front side of the leaf. Three datasets of images were constructed. The results generated using the methodology based on color segmentation with ANN MLP, showed that this methodology is not efficient. In the methodology based on texture analysis it was evaluated the LBP, LFP and the Haralick descriptors. For these descriptors it was extracted samples from the leaves and quadrants of leaves, in red and green color channels and grayscale. The results generated by the descriptors were classified by &#9672 distance and the algorithms IBK and ANN MLP from the toolbox Weka. The best results were for LBP descriptor and LFP-s for &#9672 distance with values of sensitivity above 97% and 93%, respectively, and the LBP with IBK algorithm, with values of sensitivity above 98.5%. The results showed that the LBP descriptor is the most efficient followed by LFP-s in the differentiation of the greening from other pests.
28

Análise de texturas estáticas e dinâmicas e suas aplicações em biologia e nanotecnologia / Static and dynamic texture analysis and their applications in biology and nanotechnology

Gonçalves, Wesley Nunes 02 August 2013 (has links)
A análise de texturas tem atraído um crescente interesse em visão computacional devido a sua importância na caracterização de imagens. Basicamente, as pesquisas em texturas podem ser divididas em duas categorias: texturas estáticas e texturas dinâmicas. As texturas estáticas são caracterizadas por variações de intensidades que formam um determinado padrão repetido espacialmente na imagem. Por outro lado, as texturas dinâmicas são padrões de texturas presentes em uma sequência de imagens. Embora muitas pesquisas tenham sido realizadas, essa área ainda se encontra aberta a estudos, principalmente em texturas dinâmicas por se tratar de um assunto recente e pouco explorado. Este trabalho tem como objetivo o desenvolvimento de pesquisas que abrangem ambos os tipos de texturas nos âmbitos teórico e prático. Em texturas estáticas, foram propostos dois métodos: (i) baseado em caminhadas determinísticas parcialmente auto-repulsivas e dimensão fractal - (ii) baseado em atividade em redes direcionadas. Em texturas dinâmicas, as caminhadas determinísticas parcialmente auto-repulsivas foram estendidas para sequências de imagens e obtiveram resultados interessantes em reconhecimento e segmentação. Os métodos propostos foram aplicados em problemas da biologia e nanotecnologia, apresentando resultados interessantes para o desenvolvimento de ambas as áreas. / Texture analysis has attracted an increasing interest in computer vision due to its importance in describing images. Basically, research on textures can be divided into two categories: static and dynamic textures. Static textures are characterized by intensity variations which form a pattern repeated in the image spatially. On the other hand, dynamic textures are patterns of textures present in a sequence of images. Although many studies have been carried out, this area is still open to study, especially in dynamic textures since it is a recent and little-explored subject. This study aims to develop research covering both types of textures in theoretical and practical fields. In static textures, two methods were proposed: (i) based on deterministic partially self-avoiding walks and fractal dimension - (ii) based on activity in directed networks. In dynamic textures, deterministic partially self-avoiding walks were extended to sequences of images and obtained interesting results in recognition and segmentation. The proposed methods were applied to problems of biology and nanotechnology, presenting interesting results in the development of both areas.
29

Caracterização da displasia fibrosa em imagens de tomografia computadorizada helicoidal empregando a análise da lacunaridade / Characterization of fibrous dysplasia in helical computed tomography images employing the analysis of lacunarity

Cordeiro, Mirna Scalon 04 May 2012 (has links)
A displasia fibrosa é uma alteração de desenvolvimento caracterizada pela substituição do osso normal por tecido conjuntivo denso e trabéculas ósseas imaturas, geralmente encontrada em adolescentes e adultos jovens. Uma alteração genética que envolve a proteína Gs-alfa parece ser a base do processo. A exata incidência e prevalência são difíceis de estabelecer, mas as lesões representam cerca de 5% a 7% dos tumores ósseos benignos. Nos ossos craniofaciais tem predileção pela maxila, podendo causar deformidade grave e assimetria, afetando igualmente ambos os sexos. Radiograficamente, pode apresentar diferentes padrões de imagem dependendo do grau de mineralização e maturação da lesão. .A avaliação da displasia fibrosa nas radiografias da região craniofacial pode ser difícil por causa das aparências variáveis e das estruturas que se sobrepõem, de modo que a tomografia computadorizada é um recurso relevante para o seu correto diagnóstico e planejamento de tratamento. O objetivo deste estudo foi caracterizar a displasia fibrosa através da análise da lacunaridade, um método multiescala para descrever padrões de dispersão espacial. Foram avaliados 10 pacientes (6 homens e 4 mulheres) comprometendo a maxila em sua grande maioria. Para a análise da lacunaridade, empregou-se cortes tomográficos axiais e coronais e, posteriormente, selecionou-se as regiões de interesse das áreas displásicas e do osso normal contralateral por meio do software MATLAB®. Após testes e análises estatísticas, concluiu-se que os cortes coronais, com ampliação de 3x do seu tamanho original, mostraram superioridade em relação aos axiais e, que a lacunaridade foi menor nas áreas da região displásica em relação ao osso normal, ou seja, a primeira apresentou uma maior homogeneidade de textura que a segunda. Mediante isso, pela técnica da validação cruzada leave-one-out é possível separar os grupos com uma alta acurácia (94,75%) concluindo-se que a lacunaridade é um método de análise de imagens contributivo na caracterização da displasia fibrosa. / Fibrous dysplasia is an alteration of development characterized by replacing normal bone for dense connective tissue and immature trabecular bones, typically found in teenagers and young adults. Genetic modification which involves alpha-Gs protein appears to be the basis of the process. The exact incidence and prevalence are difficult to be established, but injuries represent about 5% to 7% of benign bone tumors. On the craniofacial bones, the tumors have a predilection for the maxilla and often can cause severe deformity and asymmetry affecting both sexes equally. Radiographically, it may have different patterns depending on the image degree of mineralization and maturation of the lesion. The evaluation of radiographs of fibrous dysplasia in the craniofacial region can be difficult because of the different appearances and structures that overlaps, however, CT is an important resource for proper diagnosis and treatment planning. The aim of this study was to characterize the fibrous dysplasia by analyzing the lacunarity which is a multiscale method to describe patterns of spatial dispersion. We evaluated 10 patients (6 males and 4 females) and the maxillary was the most affected area. To the lacunarity analysis, we used an axial and coronal view and then were selected the regions of interest in the areas of dysplastic and contralateral normal bone by means of MATLAB® software. After tests and statistical analysis can be conclued that the coronal magnification 3x its original size showed superiority compared to thrust, and that the lacunarity was lower in the areas of dysplastic region in relation to normal bone, namely the first presented a more uniform texture than the second. Through this, the technique of cross-validation \"leave-one-out\" is possible to separate the groups with a high accuracy (94.75%) concluding that the lacunarity is a method of image analysis to characterize the contributory fibrous dysplasia.
30

Descritores de textura local para reconhecimento biométrico da íris humana / Local texture descriptors applied in human iris biometric recognition

Travaini, Job Nicolau 02 October 2015 (has links)
Técnicas biométricas procuraram identificar usuários pela textura da íris, impressão digital, traços faciais, entre outros. A íris humana apresenta características de textura que a classificam como uma peculiaridade biométrica de grande poder de discriminação no reconhecimento de pessoas. O objetivo deste trabalho é avaliar a eficiência de uma nova metodologia de análise de texturas em desenvolvimento no LAVI (Laboratório de Visão Computacional da EESC-USP) na identificação de indivíduos por meio da textura de sua íris. A metodologia denomina-se Local Fuzzy Pattern e tem sido utilizada com excelente desempenho com texturas gerais, naturais e artificiais. Este documento detalha as técnicas utilizadas para extração e normalização da textura da íris, a utilização e os resultados obtidos com o método Local Fuzzy Pattern aplicado à classificação biométrica da íris humana. Os resultados obtidos apresentam sensibilidade de até 99,7516% com a aplicação da metodologia proposta em bancos de imagens de íris humana disponíveis na internet demonstram a viabilidade da técnica proposta. / Biometric techniques sought to identify users by the texture of the iris, fingerprint, facial features, among others. The human iris have texture characteristics that rank it as a powerful biometric peculiarity on human recognition. The objective of this masters proposal is to investigate the efficiency of a new methodology of iris texture analysis currently in development in LAVI (Laboratório de Visão Computacional da EESC-USP). The methodology is called LFP (Local Fuzzy Pattern) and has been used with excellent overall performance on artificial and natural textures. This document details the techniques used for the extraction and normalization of the iris texture, the use and results of the local fuzzy pattern method applied to biometric classification of the human eye. The results show a sensibility of value up to 99.7516%, obtained by applying the proposed methodology on human iris photos from image database available on the internet does showing the viability of the technique.

Page generated in 0.0627 seconds