Spelling suggestions: "subject:"exture devolution"" "subject:"exture c.volution""
11 |
Simulation of large deformation response of polycrystals, deforming by slip and twinning, using the viscoplastic Ø-modelWen, Wei 05 May 2013 (has links) (PDF)
The computation of the macroscopic response of polycrystalline aggregates from the properties of their single-crystal is a main problem in materials mechanics. During the mechanical deformation processing, all the grains in the polycrystalline material sample are reoriented. A crystallographic texture may thus be developed which is responsible for the material anisotropy. Therefore, the modeling of the texture evolution is important to predict the anisotropy effects present in industrial processes. The formulation of polycrystals plasticity has been the subject of many studies and different approaches have been proposed. Ahzi and M'Guil developed a viscoplastic phi-model. This model takes into account the grains interaction effects without involving the Eshelby inclusion problems.In this thesis, the phi-model was applied to different crystallographic structures and under different loading conditions. The mechanical twinning has been taken into account in the model. The FCC rolling texture transition from copper-type to brass-type texture is studied. The shear tests in FCC metals are also studied. The predicted results are compared with experimental shear textures for a range of metals having a high SFE to low SFE. For BCC metal, we compare our predicted results with those predicted by the VPSC model. We study the slip activities, texture evolutions and the evolution of yield loci. We also present a comparison with experimental textures from literatures for several BCC metals under cold rolling tests. The model has also been extended to HCP metals. We predict the deformation behavior of the magnesium alloy for different interaction strengths. We also compare our predicted results with experimental data from literatures. We show that the results predicted by the phi-model are in good agreement with the experimental ones.
|
12 |
Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und KupfermischkristalllegierungenKauffmann, Alexander 01 July 2014 (has links) (PDF)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
|
13 |
Textures et microstructures dans l'aluminium, le cuivre et le magnésium après hyperdéformation / Textures and microstructures in Al, Cu and Mg under severe plastic deformationChen, Cai 17 June 2016 (has links)
L'hyperdéformation est une technique efficace pour transformer la microstructure des métaux en une structure de grain de taille inférieure au micron ou même en nanostructure (<100 nm). Cette très petite taille de grain confère d'excellentes propriétés mécaniques au matériau. Dans ce travail de thèse, deux techniques d'hyperdéformation récemment développées, appelées High Pressure Tube Twisting (HPTT) and Cyclic Expansion and Extrusion (CEE) ont été appliquées à température ambiante sur différents matériaux métalliques. La fragmentation de la microstructure ainsi que le développement de la texture cristallographique ont été analysés en détails par la diffraction d'électrons rétrodiffusés (EBSD), par microscopie électronique en transmission (TEM), par transmission Kikuchi diffraction (TKD) ainsi que par diffraction des rayons X (XRD). Le gradient de déformation de cisaillement dans l'épaisseur des tubes d'aluminium déformés par HPTT a été déterminé par une méthode de mesure locale du cisaillement. Ce gradient de cisaillement induit une hétérogénéité aussi bien de microstructure que de texture dans les échantillons d'aluminium et de magnésium purs ainsi que dans l'alliage Al-4%Mg en solution solide. La micro-dureté et la taille de grain dans différentes zones ont été mesurées et analysées en fonction du taux cisaillement local. Les tailles de grain limites atteintes de façon stationnaire pour ces différents matériaux produit par HPTT sont respectivement de 700 nm, 900 nm et 100 nm. L'évolution de texture du magnésium pur après HPTT jusqu'à un cisaillement de 16 a été simulée par cisaillement simple par le model auto-cohérent (VPSC), le résultat de simulation a montré de bons accords avec les mesures de texture obtenues par XRD. Sur la base des mesures de distribution de désorientation dans l'aluminium déformé par HPTT, une nouvelle technique de détermination du taux de cisaillement local dans les procédés d'hyper déformation a été proposée. Cette nouvelle technique a été appliquée sur deux échantillons d'aluminium produit par twist extrusion (TE) et par torsion à extrémités libres. Les échantillons d'aluminium et de cuivre ont été déformés intensément par CEE. Les évolutions de texture et de microstructures ont été mesurées par EBSD, montrant un gradient du centre à la périphérie des échantillons cylindriques. L'évolution de texture dans le cuivre déformé par CEE a été simulée par le modèle VPSC en utilisant un modèle de ligne de courant pour décrire la déformation dans le procédé. Les résultats de simulation confirment les caractéristiques de la texture expérimentale observées après CEE. Le comportement en traction du cuivre pré-déformé par grande déformation en torsion a ensuite été testé. En dépit du gradient de cisaillement existant dans la barre, une technique a été proposée pour obtenir la courbe contrainte-déformation pour ce type de matériau. / Severe plastic deformation (SPD) is an efficient technique to transform the microstructure of bulk metals into ultra fine grained structure with grain sizes less than 1 µm or even into nanostructure with nano-grains of less than 100 nm in diameter. The very small grain size attributes excellent mechanical properties to the material. In present thesis work, two recently developed SPD techniques, namely, High Pressure Tube Twisting (HPTT) and Cyclic Expansion and Extrusion (CEE) were performed on different metallic materials at room temperature. Details of fragmentation of microstructure and metallographic texture evolution were investigated by electron backscattered diffraction (EBSD), transmission electron microscopy (TEM), transmission kikuchi diffraction (TKD) and X-ray diffraction (XRD). Shear strain gradient across the thickness of the HPTT deformed Al tube sample was found by a local shear measurement method. This shear strain gradient induced the inhomogeneity of microstructure and texture in HPTT deformed pure Al, solid solution alloy Al-4%Mg and pure Mg. The microhardness and average grain size in different zones as a function of shear strain were measured. The limiting steady grain sizes in the steady state for these different materials produced by HPTT were 700 nm, 100 nm and 900 nm, respectively. The texture evolution of pure Mg in HPTT up to a shear strain of 16 was simulated in simple shear using the self-consistent (VPSC) polycrystal model and showed good agreements with the experimental results measured by XRD. Based on the measured disorientation distribution function in HPTT deformed Al, a new technique for the magnitude of local shear strain in SPD was proposed. This new technique was applied to a protrusion produced in twist extrusion (TE) and to an Al sample deformed in free-end torsion. Cu and pure Al samples were intensively deformed by the CEE SPD technique. The microstructure and texture evolutions were measured by EBSD, showing a gradient from the center-zone to the edge part of the rod sample. The texture evolution of CEE deformed Cu was simulated by the VPSC polycrystal model using a flow line function. The simulation results confirmed the experimental texture features observed in the CEE process. The tensile testing behavior of large strain torsion pre-processed Cu was examined. In spite of the shear strain gradient existing in the bar, a technique was proposed to obtain the tensile stress-strain curve of such gradient material.
|
14 |
Anisotropic mechanical behaviors and microstructural evolution of thin-walled additively manufactured metalsYu, Cheng-Han January 2020 (has links)
Additive manufacturing (AM), also known as 3D printing, is a concept and method of a manufacturing process that builds a three-dimensional object layer-by-layer. Opposite to the conventional subtractive manufacturing, it conquers various limitations on component design freedom and raises interest in various fields, including aerospace, automotive and medical applications. This thesis studies the mechanical behavior of thin-walled component manufactured by a common AM technique, laser powder bed fusion (LPBF). The studied material is Hastelloy X, which is a Ni-based superalloy, and it is in connection to a component repair application in gas turbines. The influence of microstructure on the deformation mechanisms at elevated temperatures is systematically investigated. This study aims for a fundamental and universal study that can apply to different material grades with FCC crystallographic structure. It is common to find elongated grain and subgrain structure caused by the directional laser energy input in the LPBF process, which is related to the different printing parameters and brands of equipment. This thesis will start with the study of scan rotation effect on stainless steel 316L in an EOS M290 equipment. The statistic texture analysis by using neutron diffraction reveals a clear transition when different level of scan rotation is applied. Scan rotation of 67° is a standard printing parameter with intention to lower anisotropy, yet, the elongated grain and cell structure is still found in the as-built microstructure. Therefore, the anisotropic mechanical behavior study is carried out on the sample printed with scan rotation of 67° in this thesis. Thin-walled effects in LPBF are investigated by studying a group of plate-like HX specimens, with different nominal thicknesses from 4mm down to 1mm, and a reference group of rod-like sample with a diameter of 18mm. A texture similar to Goss texture is found in rod-like sample, and it becomes <011>//BD fiber texture in the 4mm specimen, then it turns to be <001> fiber texture along the transverse direction (TD) in the 1mm specimen. Tensile tests with the strain rate of 10−3 s−1 have been applied to the plate-like specimens from room temperature up to 700 ℃. A degradation of strength is shown when the sample becomes thinner, which is assumed to be due to the overestimated load bearing cross-section since the as-built surface is rough. A cross-section calibration method is proposed by reducing the surface roughness, and a selection of proper roughness parameters is demonstrated with the consideration of the calculated Taylor’s factor and the residual stress. The large thermal gradient during the LPBF process induces high dislocation density and strengthens the material, hence, the LPBF HX exhibits better yield strength than conventionally manufactured, wrought HX, but the work hardening capacity and ductility are sacrificed at the same time. Two types of loading condition reveal the anisotropic mechanical behavior, where the vertical and horizontal tests refer to the loading direction being on the BD and TD respectively. The vertical tests exhibit lower strength but better ductility that is related to the larger lattice rotation observed from the samples with different deformation level. Meanwhile, the elongated grain structure and grain boundary embrittlement are responsible for the low horizontal ductility. A ductile to brittle transition is traced at 700 ℃, so a further study with two different slow strain rates, 10−5 s−1 and 10−6 s−1, are carried out at 700 ℃. Creep damage is shown in the slow strain rates testing. Deformation twinning is found only in the vertical tests where it forms mostly in the twin favorable <111> oriented grain along the LD. The large lattice rotation and the deformation twinning make the vertical ductility remain high level under the slow strain rates. The slow strain rate tensile testing lightens the understanding of creep behavior in LPBF Ni-based superalloys. In summary, this thesis uncovers the tensile behavior of LPBF HX with different variations, including geometry-dependence, temperature-dependence, crystallographic texture-dependence and strain rate-dependence. The generated knowledge will be beneficial to the future study of different mechanical behavior such as fatigue and creep, and it will also enable a more robust design for LPBF applications. / Additiv tillverkning, eller 3D-utskrifter, är tillverkningsmetoder där man skapar ett tredimensionellt objekt genom att tillföra material lager for lager. Till skillnad från konventionella avverkande tillverkningsmetoder elimineras många geometriska begränsningar vilket ger större designfrihet och metoderna har därför väckt stort intresse inom en rad olika områden, inklusive flyg-, fordons- och medicinska tillämpningar. I denna avhandling studeras mekaniska egenskaper hos tunnväggiga komponenter tillverkade med en vanligt förekommande laserbaserad pulverbädds-teknik, laser powder bed fusion (LPBF). Det studerade materialet är Hastelloy X, en Ni-baserad superlegering som är vanligt förekommande for både nytillverkning och reparation av komponenter för gasturbiner. Inverkan av mikrostruktur på deformationsmekanismerna vid förhöjda temperaturer undersöks systematiskt. Detta arbete syftar till att ge grundläggande och generisk kunskap som kan tillämpas på olika materialtyper med en kubiskt tätpackad (FCC) kristallstruktur. Det är vanligt att man hittar en utdragen kornstruktur orsakad av den riktade tillförseln av laserenergi i LPBF-processen, vilket kan relateras till olika processparametrar och kan variera mellan utrustningar frän olika leverantörer. Denna avhandling inleds med studien av effekten av scanningsstrategi vid tillverkning av rostfritt stål 316L i en EOS M290-utrustning. En statistisk texturanalys med hjälp av neutrondiffraktion påvisar en tydlig övergång mellan olika mikrostrukturer när olika scanningsstrategier tillämpas. En scanningsrotation på 67 mellan varje lager är en typisk standardinställning med avsikt att sanka anisotropin i materialet, dock finns den utdragna kornstrukturen oftast kvar. I denna avhandling studeras därför de anisotropa egenskaperna hos material tillverkade med 67 scanningsrotation. Effekten av tunnväggiga strukturer i LPBF undersöks genom att studera en uppsättning platta HX-prover, med olika nominella tjocklekar från 4 mm ner till 1 mm, samt en referensgrupp med cylindriska prov med en diameter på 18 mm. Kristallografisk textur som liknar den av Goss-typ återfinns i de cylindriska proverna vilket gradvis övergår från en fibertextur med <011> i byggriktningen for 4mm-proven till en fibertextur med <001> i tvärriktningen for 1mm-proven. Dragprovning med en töjningshastighet på 10−3 s−1 har utförts på de platta provstavarna från rumstemperatur upp till 700 ℃. En sänkning av styrkan uppvisas när proven blir tunnare, vilket kan antas bero på att det lastbarande tvärsnittet överskattas på grund av den grova ytan. En metod för tvärsnittskalibrering föreslås genom att kompensera for ytråheten, och valet av lämplig ytfinhetsparameter motiveras med hänsyn till den beräknade Taylor-faktorn och förekomsten av restspänningar. Den stora termiska gradienten som uppstår for LPBF-processen inducerar en hög dislokationstäthet vilket höjer materialets styrka och följaktligen uppvisar LPBF HX högre sträckgräns an konventionellt tillverkad, smidda HX, men förmågan till deformationshårdnande samt duktiliteten i materialet sänks samtidigt. Tester utförda i två olika belastningsriktningar, vertikalt respektive horisontellt mot byggriktningen, demonstrerar det anisotropiska mekaniska beteendet. De vertikala testerna uppvisar lägre hållfasthet men bättre duktilitet vilket kan relateras till en större benägenhet for kristallstukturen att rotera när deformationsgraden ökar. Samtidigt är den utdragna kronstukturen ansvarig for den lägre duktiliteten for de horisontella proverna. En övergång från ett duktilt till ett mer sprött beteende noterades vid 700 ℃, och därför initierades ytterligare en studie där tester med två lägre töjningshastigheter, 10−5 s−1 och 10−6 s−1, utfördes vid 700 ℃. Det kan noteras att krypskador återfinns i tester med en långsam deformationshastighet och deformationstvillingar uppstår endast i de vertikala provstavarna där det främst bildas tvillingar i korn orienterade med <111> riktningen längs belastningsriktningen. Den stora förmågan till rotation i kristallstrukturen och deformationstvillingarna bidrar till att den vertikala duktiliteten förblir hög även i testerna med en låg deformationshastighet. Testerna med en långsam draghastighet bidrar därför till en bättre förståelse av krypbeteendet i LPBF Nibaserade superlegeringar. Sammanfattningsvis så bidrar denna avhandling till bättre förståelse av de mekaniska egenskaperna hos LPBF HX i olika utföranden och förhållanden, inklusive geometriberoende, temperaturberoende, deformationshastighetsberoende samt inverkan av kristallografisk textur. Den genererade kunskapen kommer att vara till stor nytta vid fortsatta studier av olika mekaniska egenskaper som utmattning och kryp, samt bidrar till att möjliggöra en mer robust design for LPBF-tillämpningar.
|
15 |
Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und KupfermischkristalllegierungenKauffmann, Alexander 26 May 2014 (has links)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
|
16 |
Evolution Of Texture And Its Correlation With Microstructure And Mechanical Property Anisotropy In AA7010 Aluminum AlloyMondal, Chandan 07 1900 (has links) (PDF)
Al-Zn-Mg-Cu-Zr based AA7010 aluminum alloy belongs to the class of heat treatable alloys and the semi-finished products are generally produced by hot rolling, forging or extrusion processes. It is well known that the thermo-mechanical processing parameters strongly influence both the evolution of texture as well as microstructure in the material. As a result, the semi-finished products exhibit anisotropy in mechanical properties causing legitimate concerns on the applicability of the alloys. In the present thesis, a systematic study on the evolution of texture and microstructure and its implications on the mechanical properties anisotropy of AA7010 alloy has been attempted.
A brief introduction on the development of texture and its influence on the anisotropy of the mechanical properties of 7xxx series aluminum alloys is presented first with a view to explore the scopes for further investigation. An overview of the relevant literature is described subsequently. The development of texture and microstructure in an Al-Zn-Mg-Cu-Zr based 7010 aluminum alloy during uneven, hot cross-rolling is presented. Materials processing involves three different types of uneven cross-rolling. The variations in relative intensity of the β-fibre components as a function of cross rolling modes have been investigated. It has been shown that the main attributes to the texture evolution in the present study are (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component following each successive pass, (b) recrystallization resistance of Bs oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids. The stability of the unique single, rotated Brass-{110}(556) component developed in the present alloy, during long term thermal annealing and cold rolling deformation has been systematically investigated further.
Subsequently, the influence of development of microstructure and texture on the in-plane anisotropy (AIP) of yield strength, work hardening behavior and yield locus anisotropy has been presented. The AIP and work hardening behavior are evaluated by tensile testing at 0o, 45o and 90o to the rolling direction, whilst yield loci have been generated by Knoop hardness method. It has been observed that in spite of having strong rotated Brass texture, the specimens show low AIP especially in peak aged temper. The in-plane anisotropy (AIP) of yield strength, and work hardening behavior of a heat treated 7010 aluminum alloy sheet having strong, rotated Brass-{110}556 component with different texture intensity and volume fraction of recrystallization has been further evaluated. It is observed that the AIP increases with increase in texture intensity and volume fraction of recrystallization.
In the subsequent chapter, the tensile flow and work hardening behavior are described using constitutive equations. Room temperature tensile properties have been evaluated as a function of tensile axis orientations in as-hot rolled as well as peak aged conditions. It has been found that both the Ludwigson and a generalized Voce-Bergström relation adequately describe the tensile flow behavior in all conditions compared to the Hollomon relation. The Voce-Bergström parameters define the slope of - plots in the stage-III regime when the specimens show a classical linear decrease in hardening. Further analysis of work hardening behavior throws light on the effect of texture on the dislocation storage and dynamic recovery.
An overall summary of the experimental results and the scopes for future studies have been presented at the end.
|
Page generated in 0.0807 seconds