• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance bounds in terms of estimation and resolution and applications in array processing / Performances limites en termes d’estimation et de résolution et applications aux traitements d’antennes

Tran, Nguyen Duy 24 September 2012 (has links)
Cette thèse porte sur l'analyse des performances en traitement du signal et se compose de deux parties: Premièrement, nous étudions les bornes inférieures dans la caractérisation et la prédiction des performances en termes d'erreur quadratique moyenne (EQM). Les bornes inférieures de l'EQM donne la variance minimale qu'un estimateur peut atteindre et peuvent être divisées en deux catégories: les bornes déterministes pour le modèle où les paramètres sont supposés déterministes (mais inconnus), et les bornes Bayésiennes pour le modèle où les paramètres sont supposés aléatoires. En particulier, nous dérivons les expressions analytiques de ces bornes pour deux applications différentes: (i) La première est la localisation des sources en utilisant un radar multiple-input multiple-output (MIMO). Nous considérons les bornes inférieures dans deux contextes c'est-à-dire avec ou sans erreurs de modèle. (ii) La deuxième est l'estimation de phase d'impulsion de pulsars à rayon X qui est une solution potentielle pour la navigation autonome dans l'espace. Pour cette application, nous avons calculé plusieurs bornes inférieures de l'EQM dans le contexte de données modélisées par une loi de Poisson (complétant ainsi les travaux disponibles dans la littérature où les données sont modélisées par une loi gaussienne). Deuxièmement, nous étudions le seuil statistique de résolution limite (SRL), qui est la distance minimale en termes des paramètres d'intérêts entre les deux signaux permettant de séparer / estimer correctement les paramètres d'intérêt. Plus précisément, nous dérivons le SRL dans deux contextes: le traitement d'antenne et le radar MIMO en utilisant deux approches basées sur la théorie de l'estimation et sur la théorie de l'information. Finalement, nous proposons des expressions compactes du SRL dans le cas d'erreurs de modèle. / This manuscript concerns the performance analysis in signal processing and consists into two parts : First, we study the lower bounds in characterizing and predicting the estimation performance in terms of mean square error (MSE). The lower bounds on the MSE give the minimum variance that an estimator can expect to achieve and it can be divided into two categories depending on the parameter assumption: the so-called deterministic bounds dealing with the deterministic unknown parameters, and the so-called Bayesian bounds dealing with the random unknown parameter. Particularly, we derive the closed-form expressions of the lower bounds for two applications in two different fields: (i) The first one is the target localization using the multiple-input multiple-output (MIMO) radar in which we derive the lower bounds in the contexts with and without modeling errors, respectively. (ii) The other one is the pulse phase estimation of X-ray pulsars which is a potential solution for autonomous deep space navigation. In this application, we show the potential universality of lower bounds to tackle problems with parameterized probability density function (pdf) different from classical Gaussian pdf since in X-ray pulse phase estimation, observations are modeled with a Poisson distribution. Second, we study the statistical resolution limit (SRL) which is the minimal distance in terms of the parameter of interest between two signals allowing to correctly separate/estimate the parameters of interest. More precisely, we derive the SRL in two contexts: array processing and MIMO radar by using two approaches based on the estimation theory and information theory. We also present in this thesis the usefulness of SRL in optimizing the array system.
2

Analyse de performances en traitement d'antenne : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limite / Performance analysis in array signal processing. : lower bounds on the mean square error and statistical resolution limit

El Korso, Mohammed Nabil 07 July 2011 (has links)
Ce manuscrit est dédié à l’analyse de performances en traitement d’antenne pour l’estimation des paramètres d’intérêt à l’aide d’un réseau de capteurs. Il est divisé en deux parties :– Tout d’abord, nous présentons l’étude de certaines bornes inférieures de l’erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l’étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d’observations). Puis, nous étudions d’autres bornes inférieures de l’erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l’erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).– Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c’est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une ”correcte” estimation des paramètres. Nous présentons quelques applications bien connues en traitement d’antenne avant d’étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d’hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d’observation multidimensionnels / This manuscript concerns the performance analysis in array signal processing. It can bedivided into two parts :- First, we present the study of some lower bounds on the mean square error related to the source localization in the near eld context. Using the Cramér-Rao bound, we investigate the mean square error of the maximum likelihood estimator w.r.t. the direction of arrivals in the so-called asymptotic area (i.e., for a high signal to noise ratio with a nite number of observations.) Then, using other bounds than the Cramér-Rao bound, we predict the threshold phenomena.- Secondly, we focus on the concept of the statistical resolution limit (i.e., the minimum distance between two closely spaced signals embedded in an additive noise that allows a correct resolvability/parameter estimation.) We de ne and derive the statistical resolution limit using the Cramér-Rao bound and the hypothesis test approaches for the mono-dimensional case. Then, we extend this concept to the multidimensional case. Finally, a generalized likelihood ratio test based framework for the multidimensional statistical resolution limit is given to assess the validity of the proposed extension.

Page generated in 0.124 seconds