• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure géométrique des parois en micromagnétisme et des ondes de choc de solutions de lois de conservation scalaires

Lecumberry, Myriam 09 December 2003 (has links) (PDF)
Le micromagnétisme est l'étude de la magnétisation spontanée dans les matériaux ferromagnétiques. Cette magnétisation, de norme constante, est soumise à une énergie libre. Nous étudions les configurations limites admissibles de la magnétisation dans certains régimes asymptotiques. Les premiers résultats présentés concernent la structure géométrique des parois des configurations limites d'un modèle micromagnétique en deux dimensions. La similarité entre le problème micromagnétique et les lois de conservation scalaires nous permet d'obtenir, par la meme méthode, un résultat sur la structure des ondes de choc de certaines solutions d'une loi de conservation scalaire en une dimension d'espace. Enfin, nous donnons une formulation cinétique du problème mathématique lié à un modèle micromagnétique en trois dimensions et nous terminons par un résultat de régularisation pour les moyennes en vitesse des solutions d'une équation cinétique linéaire.
2

Problemes de régularité en optimisation de formes

Briançon, Tanguy 02 July 2002 (has links) (PDF)
Ce travail porte sur les problèmes de régularités en optimisation de forme. Précisément nous étudions la régularité d'un ouvert qui minimise l'énergie du problème de Dirichlet pour le Laplacien parmi tous les ouverts de mesure fixée inclus dans un grand ouvert (par exemple l'espace tout entier). La première étape consiste à regarder la régularité de la fonction d'état optimale (la solution du problème de Dirichlet sur l'ouvert minimal): on montre que, là où elle garde un signe constant, elle est localement lipschitzienne (dans tout l'espace et pas seulement dans l'ouvert optimal). La deuxième étape consiste à étudier la régularité du bord de l'ouvert optimal. Si la fonction d'état est lipschitzienne, on montre que cet ouvert est à périmètre fini. On peut également montré que, là où le terme source est positif, le Laplacien de la fonction d'état est égal, sur le bord de l'ouvert optimal, à une constante multipliée par la mesure de Hausdorff du bord. Cette constante est un multiplicateur de Lagrange dans une équation d'Euler-Lagrange. De manière formelle, cela signifie que la dérivée normale de la fonction d'état est constante sur le bord. Ceci est bien le résultat attendu: si on suppose que l'ouvert optimal est régulier, on le retrouve facilement. On peut enfin déduire de cela que, loin du support du terme source, la frontière de l'ouvert optimal est, en dehors d'un ensemble négligeable, une hypersurface analytique.

Page generated in 0.1297 seconds