Spelling suggestions: "subject:"théorie dde nombre"" "subject:"théorie dde nombreuses""
41 |
Hénologie et idée de système chez Plotin: étude sur les fondements et la nature de la détermination du réelCollette, Bernard 16 December 2004 (has links)
Mon travail a pour objet l’étude de l’idée de système telle qu’elle est pratiquée par Plotin et l’analyse du type de détermination hénologique que sous-entend une telle idée. Pour ce faire, j’ai axé mes recherches sur trois pôles :premièrement, sur le rôle que joue l’indétermination dans la constitution du système de l’être ;deuxièmement, sur le nombre comme manifestation de la détermination du réel ;troisièmement, sur la présence de l’indétermination dans le système de l’être. Mes recherches montrent qu’il existe une perméabilité du système de l’être relativement à la double indétermination qui l’entoure, à savoir celle de l’Un et celle de la matière dernière. Cette perméabilité est ce qui assure au système une vitalité interne, vitalité dont témoigne le double mouvement de procession et de conversion qui le caractérise./<p>My work’s object is the study of the idea of system which is practised by Plotinus and the kind of henological determination implied by this idea. In that perspective, my researches are shared out in three mains subjects :firstly, the function of the indetermination in the constitution of being’s system ;second, the number as expression of the determination of reality ;third, the presence of the external indetermination inside the being’s system. My researches show the existence of a system’s permeability with regard to the double indetermination which surrounds it, namely those of the One and of the ultimate Matter. This permeability ensure a vitality to the system, vitality of which the double movement of procession and conversion testifies. / Doctorat en philosophie et lettres, Orientation philosophie / info:eu-repo/semantics/nonPublished
|
42 |
Generalizations of monsky matrices for elliptic curves in legendre formMokrani, Youcef 04 1900 (has links)
Un nombre naturel n est dit congruent si il est l’aire d’un triangle rectangle dont tous les cotés sont de longueur rationnelle. Le problème des nombres congruents consiste à déterminer quels nombres sont congruents. Cette question, connue depuis plus de 1000 ans, est toujours ouverte. Elle est liée à la théorie des courbes elliptiques, car le naturel n est congruent si et seulement si la courbe elliptique y²=x³-n²x possède un point rationnel d’ordre infini. Ce lien entre les nombres congruents et les courbes elliptiques permet d’accéder à des techniques venant de la géométrie algébrique. Une de ces méthodes est le concept des matrices de Monsky qui peuvent être utilisées pour calculer la taille du groupe de 2-Selmer de la courbe elliptique y²=x³-n²x. On peut utiliser ces matrices afin de trouver de nouvelles familles infinies de nombres non-congruents. Cette relation introduit aussi des généralisations possibles au problème des nombres congruents. Par exemple, nous pouvons considérer le problème des nombres θ-congruent qui étudie des triangles avec un avec un angle fixé de taille θ au lieu de seulement des triangles rectangles. Ce problème est aussi lié aux courbes elliptiques et le concept des matrices de Monsky peut être étendu à ce cas. En fait, les matrices de Monsky peuvent être généralisées à n’importe quelle courbe elliptique qui possède une forme de Legendre sur les rationnels. Le but de ce mémoire est de construire une telle généralisation puis de l’appliquer à des problèmes de géométrie arithmétique afin de reprouver efficacement de vieux résultats ainsi que d’en trouver de nouveaux. / A positive integer n is said to be congruent if it is the area of a right triangle whose sides are all of rational length. The task of finding which integers are congruent is an old and famous yet still open question in arithmetic geometry called the congruent number problem. It is linked to the theory of elliptic curves as the integer n is congruent if and only if the elliptic curve y²=x³-n²x has a rational point of infinite order. The link between congruent numbers and elliptic curves enables the application of techniques from algebraic geometry to study the problem. One of these methods is the concept of Monsky matrices that can be used to calculate the size of the 2-Selmer group of the elliptic curve y²=x³-n²x. One can use these matrices in order to find new infinite families of non-congruent numbers. The connection to elliptic curves also introduces generalizations to the congruent number problem. For example, one may consider the θ-congruent number problem which studies triangles with a fixed angle of θ instead of only right triangles. This problem is also related to elliptic curves and the concept of Monsky matrices can be generalized to it. In fact, Monsky matrices can be generalized to any elliptic curve that has a Legendre form over the rationals. The goal of this thesis is to construct such a generalization and then to apply it to relevant problems in arithmetic geometry to efficiently reprove old results and find new ones.
|
43 |
Covering systemsKlein, Jonah 12 1900 (has links)
Un système couvrant est un ensemble fini de progressions arithmétiques avec la propriété que
chaque entier appartient à au moins une des progressions. L’étude des systèmes couvrants
a été initié par Erdős dans les années 1950, et il posa dans les années qui suivirent plusieurs
questions sur ces objets mathématiques. Une de ses questions les plus célèbres est celle du
plus petit module : est-ce que le plus petit module de tous les systèmes couvrants avec
modules distinct est borné uniformément?
En 2015, Hough a montré que la réponse était affirmative, et qu’une borne admissible
est 1016. En se basant sur son travail, mais en simplifiant la méthode, Balister, Bollobás,
Morris, Sahasrabudhe et Tiba on réduit cette borne a 616, 000. Leur méthode a menée a
plusieurs applications supplémentaires. Entre autres, ils ont compté le nombre de système
couvrant avec un nombre fixe de module.
La première partie de ce mémoire vise a étudier une question similaire. Nous allons essayer
de compter le nombre de système couvrant avec un ensemble de module fixé. La technique
que nous utiliserons nous mènera vers l’étude des symmétries de système couvrant.
Dans la seconde partie, nous répondrons à des variantes du problème du plus petit module. Nous regarderons des bornes sur le plus petit module d’un système couvrant de multiplicité s, c’est-à-dire un système couvrant dans lequel chaque module apparait au plus s
fois. Nous utiliserons ensuite ce résultat afin montrer que le plus petit module d’un système
couvrant de multiplicité 1 d’une progression arithmétique est borné, ainsi que pour montrer
que le n-eme plus petit module dans un système couvrant de multiplicité 1 est borné. / A covering system is a finite set of arithmetic progressions with the property that every
integer belongs to at least one of them. The study of covering systems was started by Erdős
in the 1950’s, and he asked many questions about them in the following years. One of the
most famous questions he asked was if the minimum modulus of a covering system with
distinct moduli is bounded uniformly.
In 2015, Hough showed that it is at most 1016. Following on his work, but simplifying
the method, Balister, Bollobás, Morris, Sahasrabudhe and Tiba showed that it is at most
616, 000. Their method led them to many further applications. Notably, they counted the
number of covering systems with a fixed number of moduli.
The first part of this thesis seeks to study a related question, that is to count the number
of covering systems with a given set of moduli. The technique developped to do this for some
sets will lead us to look at symmetries of covering systems.
The second part of this thesis will look at variants of the minimum modulus problem.
Notably, we will be looking at bounds on the minimum modulus of a covering system of
multiplicity s, that is a covering system in which each moduli appears at most s times, as well
as bounds on the minimum modulus of a covering system of multiplicity 1 of an arithmetic
progression, and finally look at bounds for the n-th smallest modulus in a covering system.
|
44 |
Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryptographiquesThomé, Emmanuel 13 December 2012 (has links) (PDF)
Le problème de la factorisation et celui du logarithme discret sont deux fondements essentiels de nombreux algorithmes de la cryptographie à clé publique. Dans le champ des algorithmes pour attaquer ces problèmes éminemment ardus, le crible algébrique et ses algorithmes cousins occupent une place de première importance. La première partie de ce mémoire est consacrée à la présentation de la " famille " du crible algébrique, et à plusieurs de mes contributions dans ce domaine. D'autres travaux sont abordés dans la partie suivante, notamment en lien avec le problème du logarithme discret sur les jacobiennes de courbes, et à ma contribution à de nouveaux algorithmes pour ce problème dans certains cas particuliers. La partie 3 du mémoire aborde mes travaux sur le thème de l'algèbre linéaire creuse sur les corps finis, motivés par le contexte d'application des algorithmes précédemment cités. La partie 4, enfin, traite de mes travaux dans le domaine de l'arithmétique, notamment concernant l'arithmétique des polynômes sur GF(2). La proximité des travaux apparaissant dans ces parties 3 et 4 avec des problématiques d'implantation indique le souci permanent, dans mes travaux, de ne pas laisser de côté cet aspect.
|
45 |
Some questions in combinatorial and elementary number theory / Quelques questions de théories combinatoire et élémentaire des nombresTringali, Salvatore 26 November 2013 (has links)
Cette thèse est divisée en deux parties : la partie I traite de combinatoire additive, la partie II s’est portée sur des questions de théorie élémentaire des nombres. Dans le chapitre 1, on généralise la transformée de Davenport pour prouver que si S\mathbb A=(A, +)S est un demi-groupe cancellatif (éventuellement non commutatif) et SX, YS sont des sous-ensembles non vides de SAS tels que le sous semi groupe engendré par SYS est commutatif, on a SS|X+Y|\gc\min(\gamma(Y, |X|+|Y|-I)SS, où S\gamma(\ctlot)S dénote la constante de Cauchy-Davenport d’un ensemble. On en obtient une extension des théorèmes de Chowla et Pillai pour les groupes cycliques et une version plus forte d’un théorème additif de Karolyi et Hamidoune. Dans le chapitre 2, on montre que si S(A,+)S est un semi-groupe cancellatif et si SX, Y\subsetcq AS alors SS|X+Y|\gc\min(\gammaX+Y), |X|+|Y|-I)SS. Cela donne une généralisation de l’inégalité de Kemperman pour les groupes sans torsion et une version plus forte du théorème d’Hamidoune-Karolyi. Dans le chapitre 3, on généralise des résultats par Freiman et al., en prouvant que si S(A,\ctlot)S est un semi-groupe linéairement ordonnable et SSS est un sous-ensemble fini de SAS engendrant un sous-semi-groupe non-abélien, alors S|S^2-\gc3|S|-2S. Dans le chapitre 4, on prouve des résultats liés à une conjecture par Gyorgy et Smyth sur la finitude des entiers Sn\gc1S tels que Sn^kS divise Sa^a \pmb^nS pour des entiers fixés SaS, SbS et SkS avec Sk\gc3S, S|ab|\gc2Set S\gcd(a,b) = 1S. Enfin, dans le chapitre 5, on considère une question de divisibilité dans les entiers, en quelque sorte liée au problème de Znam et à la conjecture d’Agoh-Giuga / This thesis is divided into two parts. Part I is about additive combinatorics. Part II deals with questions in elementary number theory. In Chapter 1, we generalize the Davenport transform to prove that if si S\mathbb A=(A, +)S is acancellative semigroup (either abelian or not) and SX, YS are non-empty subsets of SAS such that the subsemigroup generated by SYS is abelian, then SS|X+Y|\gc\min(\gamma(Y, |X|+|Y|-I)SS, where for SZ\subsetcq AS we let S\gamma(Z):=\sup_{z_0\in Z^\times}\in f_(z_0\nc z\inZ) (vm ord)(z-z_0)S. This implies an extension of Chowla’s and Pillai’s theorems for cyclic groups and a stronger version of an addition theorem by Hamidoune and Karolyi for arbitrary groups. In Chapter 2, we show that if S(A, +) is a cancellative semigroup and SX, Y\subsetcq AS then SS|X+Y|\gc\min(\gammaX+Y), |X|+|Y|-I)SS. This gives a generalization of Kemperman’s inequality for torsion free groups and a stronger version of the Hamidoune-Karolyi theorem. In Chapter 3, we generalize results by Freiman et al. by proving that if S(A,\ctlot)S is a linearly orderable semigroup and SSS is a finite subset of SAS generating a non-abelian subsemigroup, then S|S^2-\gc3|S|-2S. In Chapter 4, we prove results related to conjecture by Gyory and Smyth on the sets SR_k^\pm(a,b)S of all positive integers SnS such that Sn^kS divides Sa^a \pmb^nS for fixed integers SaS, SbS and SkS with Sk\gc3S, S|ab|\gc2Set S\gcd(a,b) = 1S. In particular, we show that SR_k^pm(a,b)S is finite if Sk\gc\max(|a|.|b|)S. In Chapter 5, we consider a question on primes and divisibility somchow related to Znam’s problem and the Agoh-Giuga conjecture
|
Page generated in 0.1147 seconds