Spelling suggestions: "subject:"ehe desert"" "subject:"ehe cesert""
461 |
Desert Enlightenment: Prophets and Prophecy in American Science FictionHagan, Justice M. 23 May 2013 (has links)
No description available.
|
462 |
Bioinspired Surfaces: Water Harvesting and Gas Bubbles MovementGurera, Dev January 2020 (has links)
No description available.
|
463 |
The Interaction of Aeolian and Fluvial Processes in Dry Washes on the Colorado Plateau, USAWalker, Beau Jensen 01 December 2014 (has links) (PDF)
In the past decade there has been a call for integrated studies that examine the interaction of fluvial and aeolian processes (Belnap et al., 2011; Bullard and Livingstone, 2002). In this study, we examined the role of land-use, weather, and soil type on the flux of aeolian material into dry washes on the Colorado Plateau in central Utah, USA, and western Colorado, USA. Our goal was to quantify the impact of individual deposition and erosion events by correlating weather and land-use data with a combination of measurement methods including dust collection via dust traps, GPS surveying, and close-range photogrammetry. Our data suggest that there is an interaction between these processes and that seasonality and land-use play a large role in determining the strength of this interaction. Particularly, high land-use and dry, windy conditions were most conducive to the surface movement of sediment and subsequent removal of that sediment by fluvial processes.
|
464 |
An Invasive Species Reduces Aquatic Insect Flux to Terrestrial Food WebsMerkley, Steven S. 11 July 2011 (has links) (PDF)
Although it is well documented how introduced species can negatively affect native species, we only poorly understand how they may alter ecosystem functions. We investigated how an invasive fish affected the flux of aquatic insects to terrestrial food webs using mesocosms in a desert spring ecosystem. We compared aquatic insect emergence between alternative community states with monocultures and polycultures of two native species of fish, least chub (Iotichthys phlegethontis) and Utah chub (Gila atraria) plus, introduced western mosquitofish (Gambusia affinis). We tested three hypotheses: (1) aquatic insect biomass will be greater than terrestrial insect biomass and thus, constitute a vital source of energy for terrestrial consumers (2) invasive mosquitofish will negatively impact the biomass of emerging aquatic insects, and (3) terrestrial consumers will negatively respond to decreased emerging aquatic insect biomass. Aquatic insects represented 79% of the flying insect community, and treatments with mosquitofish significantly reduced emergent aquatic insect biomass by 60% relative to the control without mosquitofish. Behavioral traits of invasive species are important, because mosquitofish most heavily affected insects that emerged during the day. Also, spiders that build horizontal webs were negatively correlated with decreasing aquatic insect biomass. Invasive mosquitofish can achieve very dense populations because of their high intrinsic rate of population increase, which can significantly disrupt the flow of energy between aquatic and terrestrial ecosystems, thereby reducing the energy available for terrestrial consumers.
|
465 |
Evaluating Nutrient Availability in Low Fertility Soils With Resin Capsules and Conventional Soil TestsJones, Mary Pletsch 06 July 2011 (has links) (PDF)
Commonly used soil analysis and resin capsule procedures are used to assess nutrient status in fertile soils, but their validity in semi-arid ecosystems is unknown. Three studies were performed to assess resin capsule effectiveness in semi-arid ecosystems. An incubation study was completed in which loamy sand and sandy clay loam soils were treated with rates of N, P, Fe and Zn. Each soil treatment was implanted with a resin capsule and incubated for 60 or 120 days. Resin capsules reflected NH4-N and P fertilizer at low rates in the loamy sand. NO3-N reflected rates in both soils, but did not reflect Fe or Zn application. Resin capsule NH4-N was a better indicator than KCl-extractable NH4-N, but resin capsule NO3-N was not as effective as water extraction, and resin capsule P was poor compared to NaHCO3-P. A second study was performed in glasshouse conditions using the incubation study soils. Soils were treated with rates of N, P and resin capsules were placed in pots. Pots were seeded with squirreltail grass (Elymus elymoides) and placed in a glasshouse. Resin capsules were removed at 120 days, soil samples taken, grass harvested and yield measured. Yield and total nutrient removal was correlated to resin NH4-N, marginally related to resin or soil NO3-N, and unrelated to resin P. Yield and total nutrient removal was correlated with application rates and resin NH4-N and NaHCO3-extracted P. The third field study, compared two sites with rates of N and P application were established on clay loam and sandy loam soils. Resin capsule and conventional soil tests for NO3-N, NH4-N and P were measured and plant nutrient status examined. Resin capsules were removed and replaced and soil samples taken every 90 days. Resins P was not related to P application or to plant tissue P but NaHCO3-extracted P was, while resin NO3-N, KCl-extracted NO3-N and NH4-N were correlated to N application and plant N. Soil test P was more effective in predicting P status and bioavailability than resin capsules. Resin NH4-N and NO3-N predicted N status and bioavailability, but soil tests were just as effective in semi-arid conditions.
|
466 |
Importance of Placement Depth in Evaluating Soil Nitrogen, Phosphorus, and Sulfur Using Ion Exchange Resin Capsules in Semi-Arid, Low Fertility SoilsBuck, Rachel Lynn 01 December 2013 (has links) (PDF)
Ion exchange resin capsules provide a possible alternative to conventional soil testing procedures. Previous studies with semi-arid, low fertility soils observed poor relationships with poorly mobile nutrients such as phosphorus (P). We propose that placement depth may improve those relationships. Our objective was to (1) determine if placement depth could improve resin capsule estimation of the bioavailability of nitrogen (N), P, and sulfur (S) and (2) to determine if resin capsules can effectively estimate S availability in semi-arid, low fertility soils. Field sites were established in Rush and Skull Valleys, Utah on loam and sandy loam soils, respectively. Fertilizer was surface applied as ammonium sulfate and triple superphosphate with six N, P and S treatments (0, 5.5, 11, 22, 44 and 88 kg ha-1 of N and P2O5 and 0, 7, 14, 28, 56 and 112 kg ha-1 of S). Thirty 4.0-m2 plots were established at each field location. Resin capsules were placed three per plot at 0–5, 5–10, and 10–15 cm deep in the soil and soil samples taken at respective depths. The capsules were removed and replaced after approximately 90 d. Final removal and soil sampling occurred approximately 240 d later. For the second study, fertilizer was surface applied as ammonium sulfate with six S treatments (0, 7, 14, 28, 56 and 112 kg ha-1 of S) with one resin capsule placed in each 4.0-m2 plot at a depth of 5 cm in the soil. Resin capsules were removed and replaced approximately every 90 d for a total of four samplings. Soil samples were taken with every resin capsules install and removal. In the first study, bicarbonate extractable P was significantly related to P application at all depths and times except the two lowest depths at the time of final sampling, and resin capsule P was only related to P application 398 days after application in the 0–5 and 5–10 cm depths. However, this is an improvement in estimates of bioavailability compared to a single placement depth. The 5–10 cm depth was the best for placement for determination of NH4-N, and resin capsules improved upon soil test estimates. For NO3-N, depth was not important, but resin capsules had a stronger relationship with N applied than the soil test 398 d after application. In addition, both resin capsules and the S soil test were related to S applied, but resin capsules were more able to pick up S cycling through the system. In the second study resin capsules and conventional soil tests were both effective in distinguishing between fertilizer rates, though only the conventional soil test was related to S applied at the last sampling (366 d after fertilizer application). Overall resin capsules were effective at reflecting application rates, and may be a good tool to estimate nutrient bioavailability. Correlation with plant uptake is required to determine if soil tests or resin capsules were a better estimate of bioavailable nutrients.
|
467 |
Fire and Ungulate Herbivory Differentially Affect the Sexual Reproduction of Generalist and Specialist Pollinated PlantsLybbert, Andrew Hollis 01 December 2014 (has links) (PDF)
Currently the size and frequency of wildfires are increasing at a global scale, including arid ecosystems that exhibit great sensitivity to disturbance. Fire effects on plant pollination and reproductive success in deserts are largely unknown. Plant dependence on animal pollinators for reproduction can increase the risk of reproductive failure if pollination services are hindered or lost. Species that depend on few taxonomically related pollinator species are expected to be most negatively affected by disturbances that disrupt pollination interactions. To assess fire and isolation effects on reproductive success in desert plant communities, and how wildfire influences the pollination success of generalist and specialist pollinated plants, the number of flowers, fruits, and viable seeds produced by plants surviving in burned and unburned desert landscapes were compared. Fire increased flower production for wind and generalist pollinated plants, and did not affect specialist plant flower production. Increases may be associated with positive physiological responses exhibited by plants surviving in burned areas. Fire did not affect pollination services. Wildfire effects on fruit production were neutral or positive, and overall seed:ovule ratios varied by 3% or less in burned and unburned areas for each pollination strategy. Increasing isolation within burned areas did not affect fruit production for generalist or specialist pollinated plants, suggesting that pollination services are functional across expansive burned desert landscapes. Annual reproductive output varied between years in burned and unburned areas, and shifts likely resulted from variation in annual precipitation patterns. Reductions in landscape reproductive output may be partially compensated by increased per plant fruit and seed production and maintaining pollinator services across burned landscapes, providing native shrub communities the possibility to naturally recover from fire disturbances. Habitat disturbances can influence plant interactions with herbivores, in addition to pollinators. To understand how fire and ungulate herbivory affect reproductive success of specialist pollinated desert plants, reproductive effort, floral herbivory, and pollinator visitation and success, were compared for Yucca baccata, and Yucca brevifolia in burned and unburned areas of the Mojave Desert. Fire increased Y. baccata flowering from 12% to 22% of plants in burned areas, but had no effect on the number of flowers or fruits produced per plant. Fruit set and pollinator collection failed at all sampled Y. baccata individuals, while fire and herbivory had no effect on Y. brevifolia flower, fruit, and pollinator collection. Herbivores consumed 50% and 67% of floral stalks produced by Y. baccata in unburned and burned areas. Herbivores pose a clear threat to successful sexual reproduction for Y. baccata. Removal of ungulate herbivores during important flowering periods may still result in failed fruit and seed production if local pollinator reserves have been drastically reduced or lost.
|
468 |
An Invasive Grass and a Desert Adapted Rodent: Is There an Effect on Locomotory Performance and Is It Modified by Prior Experience or Familiarization?Boag, Camille D 01 October 2015 (has links) (PDF)
Kangaroo rats (Dipodomys spp.) are frequently characterized as keystone species for their role in altering soil characteristics, changing habitat structure through seed consumption and dispersal, and being important primary consumers in their ecosystem. They are arid adapted and known to forage in areas with sparse vegetation. Studies suggests densely vegetated habitat to be unsuitable for kangaroo rats because plants are an impediment to their locomotion and predator avoidance behaviors. This study focuses on an invasive grass, South African Veldt (Ehrharta calycina), that converts landscapes with sparse vegetation into dense grassland habitats, and the Lompoc kangaroo rat (Dipodomys heermanni arenae) that occupies some of those modified landscapes. I explored the proximate effects of Veldt grass by assessing the locomotion of D.h. arenae in three Veldt grass densities. I hypothesized that Veldt grass influences kangaroo rat locomotion, but that performance could also be influenced by experience with the grass. Kangaroo rats with long-term experience with Veldt grass (i.e., those occupying a habitat containing Veldt grass) and short-term experience (two-night habituation in an artificial Veldt grass patch) were tested by pursing the animals through runways of different grass densities and measuring the amount of time spent crossing the runway, amount of time spent stopped, average velocity, and amount of motivation required to initiate and sustain movement. I also monitored habitat use during the two-night habituation period in order to assess habitat utilization among three Veldt grass density habitat patches. I hypothesized that Veldt grass may influence normal habitat utilization patterns in D.h. arenae: specifically, the avoidance of the densest habitats and preference or disproportionate utilization of the most open habitat. I found, when the animals were left alone to forage and explore, they spent significantly more time in habitat patches containing Veldt grass than in a control patch containing zero percent cover. However, in locomotion trials, Veldt grass had a negative effect on locomotory performance. These effects seem to scale with grass density, and were ameliorated to some degree by familiarization: animals from a Veldt grass habitat of origin performed better in novel Veldt grass templates than animals from a non-Veldt habitat of origin; however, both groups performed equally well after two nights’ habituation to the templates. These results suggest that learning occurred in two nights and that it increased the kangaroo rats’ ability to locomote through the grass when pursued. I note that performance studies often do not take into account the amount of motivation employed to initiate and sustain running of the test animals, and suggest that this be considered in future studies. Furthermore, the learning capacity of a kangaroo rat, as well as a community level perspective that considers neutral or even positive trophic interactions among natives and invasives, must be considered in conservation and management decisions in the future.
|
469 |
Habitat Heterogeneity Affects the Thermal Ecology of the Federally Endangered Blunt-Nosed Leopard LizardGaudenti, Nicole 01 June 2021 (has links) (PDF)
Global climate change is already contributing to the extirpation of numerous species worldwide, and sensitive species will continue to face challenges associated with rising temperatures throughout this century and beyond. It is especially important to evaluate the thermal ecology of endangered ectotherm species now so that mitigation measures can be taken as early as possible. A recent study of the thermal ecology of the federally endangered Blunt-Nosed Leopard Lizard (Gambelia sila) suggested that they face major activity restrictions due to thermal constraints in their desert habitat, but that large shade-providing shrubs act as thermal buffers to allow them to maintain surface activity without overheating. We replicated this study but added a population of G. sila with no access to large shrubs to facilitate comparison of the thermal ecology of G. sila in shrubless and shrubbed populations. We found that G. sila without access to shrubs spent more time sheltering inside rodent burrows than lizards with access to shrubs, especially during the hot summer months. Lizards from a shrubbed population had higher midday body temperatures and therefore poorer thermoregulatory accuracy than G. sila from a shrubless population, suggesting that greater surface activity may represent a thermoregulatory tradeoff for G. sila. Lizards at both sites are currently constrained from using open, sunny microhabitats for much of the day during their short active seasons, and our projections suggest that climate change will exacerbate these restrictions and force G. sila to use rodent burrows for shelter even more than they do now, especially at sites without access to shrubs. The continued management of shrubs and of burrowing rodents at G. sila sites is therefore essential to the survival of this endangered species.
|
470 |
Restricted Microbial Presence, Activity, and Community Structuring Within Dry Valley Soils of AntarcticaGeorge, Scott Fillerup 16 December 2021 (has links)
The McMurdo Dry Valley region is the largest ice-free area of Antarctica. Harsh abiotic conditions of the polar desert ecosystem, including extreme cold, aridity, and limited nutrient availability select for unique taxa. The comparatively simple terrestrial ecosystem is well-suited for investigating edaphic influences on microbial presence, activity, and community structuring. The Dry Valleys are viewed as a useful analog for Mars astrobiology investigations. However, most biotic investigations have been focused on lower elevations, where an understanding of edaphic effects on microbial communities within its generally more favorable conditions has emerged. Transiently wetted Dry Valley water tracks may be analogous to recurring slope lineae on Mars. Dry permafrost is rare on Earth, and unique to high-elevation Antarctica soils, but is ubiquitous on Mars. Identifying if abiotic properties known to structure microbial communities within low elevation soils holds true for water tracks and dry permafrost is not known. My dissertation investigates edaphic effects on microbial communities within water track soils and dry permafrost. First, I review the ecological effects of transient wetting within hyperarid environments of the Atacama Desert of Chile and the Dry Valleys of Antarctica and apply the findings to possible habitability of modern and early (i.e., ~3.5 bya) Mars surface environments. I show that deliquescent hygroscopic salts facilitate biological response where little or no biotic activity would occur otherwise, yet the salts can also inhibit life. Transient wetting alone may also not be enough to support life. Secondly, I examine bacterial community composition, richness, and diversity on and off water track soils in Taylor Valley and show they are significantly different in composition, which likely influence ecosystem functioning. Salinity is shown as the best predictor of composition. Third, I examine a bacterial community from a Beacon Valley water track, which we believe is among the highest, driest, and coldest soils on Earth that still experiences brief seasonal wetting. I show a small but diverse community is present, with some viable cells, yet no detectable RNA is expressed by the community when tested within a suite of simulated Martin soils. Finally, I examine bacterial and fungal communities in dry permafrost of Arena Valley. I show a strikingly minimal microbial community severely restricted by the extreme cold, oligotrophy, and aridity. Several abundant taxa are related to those within maritime, costal, and endolithic habitats, indicating that they are foreign inoculum. The communities appear to be inactive to such a degree that they are not meaningfully structured by the broad suite of measured abiotic properties. Dry permafrost soils and water track environments are extremely challenging habitats, but they are generally more favorable than conditions observed on Mars. My research has important ecological value for investigating terrestrial thresholds of microbial habitability on Earth and for Mars astrobiology investigations.
|
Page generated in 0.0513 seconds