• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VISUALIZATION OF THE STEINER TREE HEURISTIC SOLUTIONS WITH LEDA

KO, MYUNG CHUL 16 September 2002 (has links)
No description available.
2

Complexity and Approximation of the Rectilinear Steiner Tree Problem

Mussafi, Noor Saif Muhammad 05 August 2009 (has links)
Given a finite set K of terminals in the plane. A rectilinear Steiner minimum tree for K (RST) is a tree which interconnects among these terminals using only horizontal and vertical lines of shortest possible length containing Steiner point. We show the complexity of RST i.e. belongs to NP-complete. Moreover we present an approximative method of determining the solution of RST problem proposed by Sanjeev Arora in 1996, Arora's Approximation Scheme. This algorithm has time complexity polynomial in the number of terminals for a fixed performance ratio 1 + Epsilon.
3

Complexity and Approximation of the Rectilinear Steiner Tree Problem

Mussafi, Noor Saif Muhammad 21 July 2009 (has links)
Given a finite set K of terminals in the plane. A rectilinear Steiner minimum tree for K (RST) is a tree which interconnects among these terminals using only horizontal and vertical lines of shortest possible length containing Steiner point. We show the complexity of RST i.e. belongs to NP-complete. Moreover we present an approximative method of determining the solution of RST problem proposed by Sanjeev Arora in 1996, Arora's Approximation Scheme. This algorithm has time complexity polynomial in the number of terminals for a fixed performance ratio 1 + Epsilon.
4

Heurística aplicada ao problema árvore de Steiner Euclidiano com representação nó-profundidade-grau / Heuristic applied to the Euclidean Steiner tree problem with no-dedepth- degree encoding

Oliveira, Marcos Antônio Almeida de 03 September 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-06T19:23:12Z No. of bitstreams: 2 Dissertação - Marcos Antônio Almeida de Oliveira - 2014..pdf: 1092566 bytes, checksum: 55edbdaf5b3ac84fe3f6835682fe2a13 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-19T14:34:20Z (GMT) No. of bitstreams: 2 Dissertação - Marcos Antônio Almeida de Oliveira - 2014..pdf: 1092566 bytes, checksum: 55edbdaf5b3ac84fe3f6835682fe2a13 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-19T14:34:20Z (GMT). No. of bitstreams: 2 Dissertação - Marcos Antônio Almeida de Oliveira - 2014..pdf: 1092566 bytes, checksum: 55edbdaf5b3ac84fe3f6835682fe2a13 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-09-03 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / A variation of the Beasley (1992) algorithm for the Euclidean Steiner tree problem is presented. This variation uses the Node-Depth-Degree Encoding, which requires an average time of O(n) in operations to generate and manipulate spanning forests. For spanning tree problems, this representation has linear time complexity when applied to network design problems with evolutionary algorithms. Computational results are given for test cases involving instances up to 500 vertices. These results demonstrate the use of the Node-Depth-Degree in an exact heuristic, and this suggests the possibility of using this representation in other techniques besides evolutionary algorithms. An empirical comparative and complexity analysis between the proposed algorithm and a conventional representation indicates the efficiency advantages of the solution found. / É apresentada uma variação do algoritmo de Beasley (1992) para o Problema árvore de Steiner Euclidiano. Essa variação utiliza a Representação Nó-Profundidade-Grau que requer, em média, tempo O(n) em operações para gerar e manipular florestas geradoras. Para problemas de árvore geradora essa representação possui complexidade de tempo linear sendo aplicada em problemas de projeto de redes com algoritmos evolutivos. Resultados computacionais são dados para casos de teste envolvendo instâncias de até 500 vértices. Esses resultados demonstram a utilização da representação Nó-Profundidade-Grau em uma heurística exata, e isso sugere a possibilidade de utilização dessa representação em outras técnicas além de algoritmos evolutivos. Um comparativo empírico e da análise de complexidade entre o algoritmo proposto e uma representação convencional indica vantagens na eficiência da solução encontrada.
5

Worst-case robot navigation in deterministic environments

Mudgal, Apurva 02 December 2009 (has links)
We design and analyze algorithms for the following two robot navigation problems: 1. TARGET SEARCH. Given a robot located at a point s in the plane, how will a robot navigate to a goal t in the presence of unknown obstacles ? 2. LOCALIZATION. A robot is "lost" in an environment with a map of its surroundings. How will it find its true location by traveling the minimum distance ? Since efficient algorithms for these two problems will make a robot completely autonomous, they have held the interest of both robotics and computer science communities. Previous work has focussed mainly on designing competitive algorithms where the robot's performance is compared to that of an omniscient adversary. For example, a competitive algorithm for target search will compare the distance traveled by the robot with the shortest path from s to t. We analyze these problems from the worst-case perspective, which, in our view, is a more appropriate measure. Our results are : 1. For target search, we analyze an algorithm called Dynamic A*. The robot continuously moves to the goal on the shortest path which it recomputes on the discovery of obstacles. A variant of this algorithm has been employed in Mars Rover prototypes. We show that D* takes O(n log n) time on planar graphs and also show a comparable bound on arbitrary graphs. Thus, our results show that D* combines the optimistic possibility of reaching the goal very soon while competing with depth-first search within a logarithmic factor. 2. For the localization problem, worst-case analysis compares the performance of the robot with the optimal decision tree over the set of possible locations. No approximation algorithm has been known. We give a polylogarithmic approximation algorithm and also show a near-tight lower bound for the grid graphs commonly used in practice. The key idea is to plan travel on a "majority-rule map" which eliminates uncertainty and permits a link to the half-Group Steiner problem. We also extend the problem to polygonal maps by discretizing the domain using novel geometric techniques.

Page generated in 0.0913 seconds