Spelling suggestions: "subject:"angewandte mathematik"" "subject:"angewandte thematik""
1 |
Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht /Humenberger, Johann. Reichel, Hans-Christian. January 1995 (has links) (PDF)
Univ., Diss.--Wien, 1994. / Literaturverz. S. [263] - 278.
|
2 |
Zahlvorstellung und Operieren am mentalen Zahlenstrahl eine Untersuchung im mathematischen Anfangsunterricht zu computergestützten Eigenkonstruktionen mit Hilfe einer LOGO-Umgebung /Klaudt, Dieter. January 2005 (has links)
Ludwigsburg, Pädagog. Hochsch., Diss., 2005.
|
3 |
Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht /Humenberger, Johann. Reichel, Hans-Christian. January 1995 (has links)
Universiẗat, Diss. J. Humenberger, 1994--Wien.
|
4 |
Inverse Autoconvolution Problems with an Application in Laser PhysicsBürger, Steven 21 October 2016 (has links) (PDF)
Convolution and, as a special case, autoconvolution of functions are important in many branches of mathematics and have found lots of applications, such as in physics, statistics, image processing and others. While it is a relatively easy task to determine the autoconvolution of a function (at least from the numerical point of view), the inverse problem, which consists in reconstructing a function from its autoconvolution is an ill-posed problem. Hence there is no possibility to solve such an inverse autoconvolution problem with a simple algebraic operation. Instead the problem has to be regularized, which means that it is replaced by a well-posed problem, which is close to the original problem in a certain sense.
The outline of this thesis is as follows:
In the first chapter we give an introduction to the type of inverse problems we consider, including some basic definitions and some important examples of regularization methods for these problems. At the end of the introduction we shortly present some general results about the convergence theory of Tikhonov-regularization.
The second chapter is concerned with the autoconvolution of square integrable functions defined on the interval [0, 1]. This will lead us to the classical autoconvolution problems, where the term “classical” means that no kernel function is involved in the autoconvolution operator. For the data situation we distinguish two cases, namely data on [0, 1] and data on [0, 2]. We present some well-known properties of the classical autoconvolution operators. Moreover, we investigate nonlinearity conditions, which are required to show applicability of certain regularization approaches or which lead convergence rates for the Tikhonov regularization. For the inverse autoconvolution problem with data on the interval [0, 1] we show that a convergence rate cannot be shown using the standard convergence rate theory. If the data are given on the interval [0, 2], we can show a convergence rate for Tikhonov regularization if the exact solution satisfies a sparsity assumption. After these theoretical investigations we present various approaches to solve inverse autoconvolution problems. Here we focus on a discretized Lavrentiev regularization approach, for which even a convergence rate can be shown. Finally, we present numerical examples for the regularization methods we presented.
In the third chapter we describe a physical measurement technique, the so-called SD-Spider, which leads to an inverse problem of autoconvolution type. The SD-Spider method is an approach to measure ultrashort laser pulses (laser pulses with time duration in the range of femtoseconds). Therefor we first present some very basic concepts of nonlinear optics and after that we describe the method in detail. Then we show how this approach, starting from the wave equation, leads to a kernel-based equation of autoconvolution type.
The aim of chapter four is to investigate the equation and the corresponding problem, which we derived in chapter three. As a generalization of the classical autoconvolution we define the kernel-based autoconvolution operator and show that many properties of the classical autoconvolution operator can also be shown in this new situation. Moreover, we will consider inverse problems with kernel-based autoconvolution operator, which reflect the data situation of the physical problem. It turns out that these inverse problems may be locally well-posed, if all possible data are taken into account and they are locally ill-posed if one special part of the data is not available. Finally, we introduce reconstruction approaches for solving these inverse problems numerically and test them on real and artificial data.
|
5 |
Discretization techniques and efficient algorithms for contact problemsHüeber, Stefan. January 2008 (has links)
Stuttgart, Univ., Diss., 2008.
|
6 |
Lokale Lagrange-Interpolation mit SplineoberflächenDinh, Andreas, January 2006 (has links)
Mannheim, Univ., Diss., 2006.
|
7 |
Inverse Autoconvolution Problems with an Application in Laser PhysicsBürger, Steven 21 September 2016 (has links)
Convolution and, as a special case, autoconvolution of functions are important in many branches of mathematics and have found lots of applications, such as in physics, statistics, image processing and others. While it is a relatively easy task to determine the autoconvolution of a function (at least from the numerical point of view), the inverse problem, which consists in reconstructing a function from its autoconvolution is an ill-posed problem. Hence there is no possibility to solve such an inverse autoconvolution problem with a simple algebraic operation. Instead the problem has to be regularized, which means that it is replaced by a well-posed problem, which is close to the original problem in a certain sense.
The outline of this thesis is as follows:
In the first chapter we give an introduction to the type of inverse problems we consider, including some basic definitions and some important examples of regularization methods for these problems. At the end of the introduction we shortly present some general results about the convergence theory of Tikhonov-regularization.
The second chapter is concerned with the autoconvolution of square integrable functions defined on the interval [0, 1]. This will lead us to the classical autoconvolution problems, where the term “classical” means that no kernel function is involved in the autoconvolution operator. For the data situation we distinguish two cases, namely data on [0, 1] and data on [0, 2]. We present some well-known properties of the classical autoconvolution operators. Moreover, we investigate nonlinearity conditions, which are required to show applicability of certain regularization approaches or which lead convergence rates for the Tikhonov regularization. For the inverse autoconvolution problem with data on the interval [0, 1] we show that a convergence rate cannot be shown using the standard convergence rate theory. If the data are given on the interval [0, 2], we can show a convergence rate for Tikhonov regularization if the exact solution satisfies a sparsity assumption. After these theoretical investigations we present various approaches to solve inverse autoconvolution problems. Here we focus on a discretized Lavrentiev regularization approach, for which even a convergence rate can be shown. Finally, we present numerical examples for the regularization methods we presented.
In the third chapter we describe a physical measurement technique, the so-called SD-Spider, which leads to an inverse problem of autoconvolution type. The SD-Spider method is an approach to measure ultrashort laser pulses (laser pulses with time duration in the range of femtoseconds). Therefor we first present some very basic concepts of nonlinear optics and after that we describe the method in detail. Then we show how this approach, starting from the wave equation, leads to a kernel-based equation of autoconvolution type.
The aim of chapter four is to investigate the equation and the corresponding problem, which we derived in chapter three. As a generalization of the classical autoconvolution we define the kernel-based autoconvolution operator and show that many properties of the classical autoconvolution operator can also be shown in this new situation. Moreover, we will consider inverse problems with kernel-based autoconvolution operator, which reflect the data situation of the physical problem. It turns out that these inverse problems may be locally well-posed, if all possible data are taken into account and they are locally ill-posed if one special part of the data is not available. Finally, we introduce reconstruction approaches for solving these inverse problems numerically and test them on real and artificial data.
|
8 |
Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations / Asymptotische und Stationäre Erhaltungsverfahren für Kinetische und Hyperbolische Partielle DifferentialgleichungenKanbar, Farah January 2023 (has links) (PDF)
In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of MHD equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate AP schemes for kinetic equations and their ability to preserve stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed to capture good solutions of the model. For such kinetic models, equilibrium solutions are reached after large time. Thus we need a new technique to numerically preserve stationary solutions for AP schemes. We find a criterion for SP schemes for kinetic equations which states, that AP schemes under a particular discretization are also SP. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. Our AP scheme is proven to have a SP property under the condition that the pressure is a function of the density and the latter is obtained as a solution of an elliptic equation. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. / In dieser Arbeit interessieren wir uns für numerisch erhaltende stationäre Lösungen von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced Finite-Volumen Verfahren für das System der Euler-Gleichungen und das System der MHD-Gleichungen mit Gravitationsquell term. Da Strömungsmodelle und kinetische Modelle miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP) Verfahren für kinetische Gleichungen und ihre Fähigkeit, stationäre Lösungen zu erhalten. Kinetische Modelle haben typischerweise einen steifen Term, so dass AP Verfahren erforderlich sind, um gute Lösungen des Modells zu erhalten. Bei solchen kinetischen Modellen werden Gleichgewichtslösungen erst nach langer Zeit erreicht. Daher benötigen wir eine neue Technik, um stationäre Lösungen für AP Verfahren numerisch zu erhalten. Wir finden ein Kriterium für stationär-erhaltende (SP) Verfahren für kinetische Gleichungen, das besagt, dass AP Verfahren unter einer bestimmten Diskretisierung auch SP sind. In dem Versuch unser Ergebnis für kinetische Gleichungen im Kontext von Strömungsmodellen nachzuahmen, haben wir für die isentropen Euler-Gleichungen ein AP Verfahren für den Grenzwert der Mach-Zahl gegen Null, entwickelt. Unser AP Verfahren hat nachweislich eine SP Eigenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und letztere als Lösung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des von uns entwickelten und seine Kriterien werden anhand verschiedener Testfälle aus der Literatur numerisch validiert. / In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions.
In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature.
|
9 |
Complexity and Approximation of the Rectilinear Steiner Tree ProblemMussafi, Noor Saif Muhammad 05 August 2009 (has links)
Given a finite set K of terminals in the plane. A
rectilinear Steiner minimum tree for K (RST) is
a tree which interconnects among these terminals
using only horizontal and vertical lines of shortest
possible length containing Steiner point. We show the
complexity of RST i.e. belongs to NP-complete.
Moreover we present an approximative method of
determining the solution of RST problem proposed by Sanjeev Arora
in 1996, Arora's Approximation Scheme. This algorithm
has time complexity polynomial in the number of
terminals for a fixed performance ratio 1 + Epsilon.
|
10 |
Contributions to regularization theory and practice of certain nonlinear inverse problemsHofmann, Christopher 23 December 2020 (has links)
The present thesis addresses both theoretical as well as numerical aspects of the treatment of nonlinear inverse problems. The first part considers Tikhonov regularization for nonlinear ill-posed operator equations in Hilbert scales with oversmoothing penalties. Sufficient as well as necessary conditions to establish convergence are introduced and convergence rate results are given for various parameter choice rules under a two sided nonlinearity constraint. Ultimately, both a posteriori as well as certain a priori parameter choice rules lead to identical converce rates.
The theoretical results are supported and augmented by extensive numerical case studies. In particular it is shown, that the localization of the above mentioned nonlinearity constraint is not trivial. Incorrect localization will prevent convergence of the regularized to the exact solution.
The second part of the thesis considers two open problems in inverse option pricing and electrical impedance tomography. While regularization through discretization is sufficient to overcome ill-posedness of the latter, the first requires a more sophisticated approach. It is shown, that the recovery of time dependent volatility and interest rate functions from observed option prices is everywhere locally ill-posed. This motivates Tikhonov-type or variational regularization with two parameters and penalty terms to simultaneously recover these functions. Two parameter choice rules using the L-hypersurface as well as a combination of L-curve and quasi-optimality are introduced. The results are again supported by extensive numerical case studies.
|
Page generated in 0.0821 seconds