Spelling suggestions: "subject:"bytheoretical mathematics"" "subject:"20theoretical mathematics""
61 |
Modeling Waves in Linear and Nonlinear Solids by First-Order Hyperbolic Differential EquationsYang, Lixiang 20 July 2011 (has links)
No description available.
|
62 |
Universal numerical seriesBorochof, Gabriel 12 1900 (has links)
Dans ce mémoire, nous allons nous concentrer sur le sujet de l’universalité en analyse complexe. Tout d'abord, nous allons énumérer de nombreux résultats découverts dans ce domaine, tout en soulignant que, dans la plupart des cas, les preuves d'existence des éléments universels sont implicites et non pas constructives. Nous examinerons en détail une preuve spécifique de l'existence des séries universelles de Taylor qui se voulait constructive et nous déterminerons si tel est le cas ou non. Pour atteindre cet objectif, nous introduirons un nouvel élément universel que nous appellerons les séries numériques universelles. Ce sont des séries complexes telles que leurs sommes partielles sont denses dans le plan complexe. Nous donnerons une preuve constructive de l'existence de ces éléments et, afin de déterminer pleinement si la preuve susmentionnée de l'existence des séries universelles de Taylor est constructive, nous allons la comparer avec notre preuve de l'existence des séries numériques universelles. Enfin, nous examinerons les propriétés topologiques et algébriques des séries numériques universelles, en montrant sous quelles conditions elles sont topologiquement génériques et algébriquement génériques dans l'ensemble de toutes séries formelles à termes complexes. / This master's thesis will be centered around the subject of universality in complex analysis. First, we will provide a summary of many of the results that have been discovered in the field of universality. We will show that, in most cases, the proofs of existence of the universal elements are not constructive, but, rather, implicit. We will perform an in-depth analysis of a specific proof of the existence of Universal Taylor series which was intended to be constructive and we will determine whether or not this goal was achieved. To do this, we will introduce a new universal element, which we will call Universal numerical series. These are complex numerical series such that the partial sums of the series are dense in the complex plane. We will give a constructive proof of the existence of these elements and, in order to fully determine whether the aforementioned proof of the existence of the Universal Taylor series is constructive, we will compare it to our proof of the existence of the Universal numerical series. Finally, we will examine the topological and algebraic properties of the Universal numerical series, showing under which conditions they are topologically generic and algebraically generic in the set of all complex numerical series.
|
63 |
Pièges et vieillissement pour les marches aléatoires sur des environnements aléatoires hautement irréguliers : phénoménologie et étude de casDavignon, Élise 11 1900 (has links)
Nous présentons d’abord une introduction au sujet des marches aléatoires en milieux aléatoires. Nous nous penchons en particulier sur les phénomènes de ralentissement, et plus précisément sur la propriété de vieillissement qu’exhibent plusieurs de ces systèmes lorsque les paramètres sont tels qu’ils conduisent l’environnement aléatoire à produire fréquemment des « pièges », soient des structures qui retiennent la marche aléatoire dans la même région de l’environnement pour de longues durées de temps. Nous illustrons ces notions à l’aide de résultats connus pour deux modèles. Nous présentons par la suite une preuve pour une propriété de vieillissement dans le cas
de la marche aléatoire biaisée sur les conductances aléatoires à queues lourdes dans la grille
infinie hyper-cubique à d dimensions, qui est le sujet d’un article en attente de publication. / We first present an introduction to the topic of random walks on random environments (RWRE). In particular, we look at slow-down phenomena and, more specifically, ageing properties exhibited by multiple such systems when parameters are chosen such that the random environment frequently produces large “traps”: structures that hold up the progress of the random walk by keeping it in the same region of the environment for long periods of time. We illustrate these behaviours by presenting known results for two such models. We then present a proof for an ageing property in the case of the biased random walk on heavy-tailed random conductances in the infinite hyper-cubic lattice in d dimensions; this is the subject of a research article pending publication.
|
64 |
Approaches to Boyd’s conjectures and their applicationsWu, Gang 12 1900 (has links)
Dans cette thèse, nous considérons quatre cas de conjectures de Boyd pour la mesure de Mahler de polynômes. Le premier cas concerne un polynôme associé à une courbe de genre 1, deux autres cas couvrent des courbes de genre 2, et le dernier cas traite d’une courbe de genre 3.
Pour le cas de la courbe de genre 1, nous étudions une identité conjecturée par Boyd et prouvée par Boyd et Rodriguez-Villegas. On trouve un expression de la mesure de Mahler donnée par une combinaison linéaire de certaines valeurs du dilogarithme de Bloch-Wigner. En combinant cela avec le résultat prouvé par Boyd et Rodriguez-Villegas, nous pouvons établir certaines identités entre différentes valeurs du dilogarithme de Bloch-Wigner.
Pour les problèmes liés aux courbes de genre 2, nous utilisons le régulateur elliptique pour récupérer des identités entre les mesures de Mahler des certaines familles de courbes de genre 2 qui ont ́eté conjecturées par Boyd et prouvèes par Bertin et Zudilin en différenciant le paramètre des formules de la mesure de Mahler et en utilisant des identités hypergéométriques.
Pour le cas impliquant la courbe de genre 3, nous utilisons le régulateur elliptique pour prouver une identité entièrement nouvelle entre les mesures de Mahler d’une famille polynomiale de genre 3 et d’une famille polynomiale de genre 1 qui à été initialement conjectur ́ee par Liu et Qin.
Comme nos preuves pour les cas des courbes des genres 2 et 3 impliquent le régulateur, elles éclairent la relation des mesures de Mahler des familles des genres 2 ou 3 avec des valeurs spéciales des fonctions L associées aux familles de genre 1. / In this dissertation, we consider four cases of Boyd’s conjectures for the Mahler measure of polynomials. The first case involves a polyno- mial defining a genus 1 curve, two other cases cover genus 2 curves, and the final case deals with a genus 3 curve.
For the case of the genus 1 curve, we study an identity conjectured by Boyd and proven by Boyd and Rodriguez-Villegas. We find an expression of the Mahler measure given by a linear combination of some values of the Bloch-Wigner dilogarithm. Combining this with the result proven by Boyd and Rodriguez-Villegas, we can establish some identities among different values of the Bloch-Wigner dilogarithm.
For the problems related to the genus 2 curves, we use the elliptic regulator to recover some identities between Mahler measures involving certain families of genus 2 curves that were conjectured by Boyd and proven by Bertin and Zudilin by differentiating the parameter in the Mahler measure formulas and using hypergeometric identities.
For the case involving the genus 3 curve, we use the elliptic regulator to prove an entirely new identity between the Mahler measures of a genus 3 polynomial family and of a genus 1 polynomial family that was initially conjectured by Liu and Qin.
Since our proofs for the cases of genus 2 and 3 curves involve the regulator, they yield light into the relation of the Mahler measures of the genus 2 or 3 families with special values of the L-functions associ- ated to the genus 1 families.
|
65 |
Diamètre spectral et cohomologie symplectiqueMailhot, Pierre-Alexandre 08 1900 (has links)
Le groupe de difféomorphismes hamiltoniens à support compact d’une variété
symplectique admet une distance naturelle bi-invariante, d’après les
travaux de Viterbo, Schwarz, Oh, Frauenfelder et Schlenk, construite à partir
des invariants spectraux en homologie de Floer Hamiltonienne. Cette
distance, appelée la norme spectrale, s’est révélée être un outil fort utile en
topologie symplectique. Par contre, son diamètre reste inconnu en général.
En fait, pour les variétés symplectiques fermées, il n’existe même pas de
critère pour déterminer si la norme spectrale a un diamètre fini ou infini.
Il a été conjecturé que, pour les variétés symplectiquement asphériques, le
diamètre de la norme spectrale est infini.
Dans cette thèse, nous démontrons que pour tout domaine de Liouville, la
norme spectrale a un diamètre infini si et seulement si la cohomologie symplectique
du domaine de Liouville en question est non nulle. Ceci généralise
un résultat de Monzner-Vichery-Zapolsky et admet plusieurs applications
dans le cadre des variétés symplectiques fermées. En particulier, nous démontrons
que le produit de deux variétés symplectiquement asphériques a
un diamètre spectral infini. Plus généralement, nous démontrons que toute
variété symplectiquement asphérique contenant un domaine de Liouville incompressible
de codimension zéro avec cohomologie symplectique non nulle
doit avoir un diamètre spectral infini. / The group of compactly supported Hamiltonian diffeomorphisms of a symplectic
manifold is endowed with a natural bi-invariant distance, due to
Viterbo, Schwarz, Oh, Frauenfelder and Schlenk, coming from spectral invariants
in Hamiltonian Floer homology. This distance, called the spectral
norm, has found numerous applications in symplectic topology. However,
its diameter is still unknown in general. In fact, for closed symplectic manifolds
there is no unifying criterion for the diameter to be finite or infinite.
It has been conjectured that for closed symplectically aspherical manifolds,
the spectral norm has infinite diameter.
In this thesis, we prove that for any Liouville domain the spectral norm has
infinite diameter if and only if its symplectic cohomology does not vanish.
This generalizes a result of Monzner-Vichery-Zapolsky and has applications
in the setting of closed symplectic manifolds. For instance, we show that the
product of two closed symplectically aspherical manifold has an infinite spectral
diameter . More generally, we prove that any symplectically aspherical
manifold which contains an incompressible Liouville domain of codimension
zero with non-vanishing symplectic cohomology must have infinite spectral
diameter.
|
66 |
On the Quantization Problem in Curved SpaceBernard, Benjamin 05 September 2012 (has links)
No description available.
|
67 |
Topologie symplectique qualitative et quantitative des fibrés cotangentsBroćić, Filip 05 1900 (has links)
Cette thèse explore les propriétés quantitatives et qualitatives des fibrés cotangents T∗M de variétés lisses fermées M, d’un point de vue symplectique.
Les aspects quantitatifs concernent le problème d’empilement de boules symplectiques dans un voisinage ouvert W de la section nulle. Nous introduisons une fonction de type distance ρW sur la section nulle M en utilisant l’empilement symplectique de deux boules. Dans le cas où W est le fibré en disques unitaire associé à une métrique riemannienne g, nous montrons comment reconstruire la métrique g à partir de ρW. Comme étape intermédiaire, nous construisons un plongement symplectique de la boule B2n(2/√π) de capacité 4 dans le produit de disques unitaires lagrangiens Bn(1) × Bn(1). Une telle construction implique la conjecture de Viterbo forte pour Bn(1) × Bn(1).
Nous donnons aussi une borne sur le rayon relatif de Gromov Gr(M, W) lorsque M admet une action non-contractile de S1. La borne est donnée en termes de l’action symplectique des relevés des orbites non-contractiles de l’action de S1. Nous donnons aussi des exemples de cas où cette borne est optimale. Ce résultat fait partie d’un travail en collaboration avec Dylan Cant. La deuxième partie du travail est liée aux aspects qualitatifs. Nous montrons l’existence d’orbites périodiques de systèmes hamiltoniens sur T∗M pour une grande classe d’hamiltoniens.
Un autre aspect qualitatif est la preuve de la conjecture de la corde Arnol’d pour les sous-variétés legendriennes conormales dans le fibré en co-sphères S∗M. Cette partie de la thèse est un travail conjoint avec Dylan Cant et Egor Shelukhin. Nous montrons que pour une sous-variété fermée donnée N ⊂ M, il existe une corde de Reeb non-constante dans (S∗M,α) avec extrémités sur ΛN := ν∗N ∩S∗M, pour toute forme de contact α sur S∗M qui induit la structure de contact standard. / This dissertation explores the quantitative and qualitative properties of the cotangent bundles T ∗M of a closed smooth manifolds M , from the symplectic point of view. Quantitative aspects involve packing the open neighborhood W of the zero section with symplectic balls. We introduce a distance-like function ρW on the zero section M using the symplectic packing of two balls. In the case when W is the unit disc-cotangent bundle associated to the Riemannian metric g, we show how to recover the metric g from ρW . As an intermediate step, we construct a symplectic embedding from the ball B2n(2/√π) of capacity 4 to the product of Lagrangian unit discs Bn(1) × Bn(1). Such a construction implies the
strong Viterbo conjecture for Bn(1) × Bn(1). We also give a bound on the relative Gromov width Gr(M, W) when M admits a non-contractible S1-action. The bound is given in terms of the symplectic action of the lift of non-contractible orbits of the S1-action. We also provide examples of when such a bound is sharp. This result is part of the joint work with Dylan Cant. The second part of this joint work is related to the qualitative aspects. We show the existence of periodic orbits of
Hamiltonian systems on T ∗M for a large class of Hamiltonians. Another qualitative aspect is proof of the Arnol’d chord conjecture for conormal Legendrians in the co-sphere bundle S∗M . This part of the dissertation is joint work with
Dylan Cant and Egor Shelukhin. We show that for a given closed submanifold N ⊂ M there exists a non-constant Reeb chord in (S∗M, α) with endpoints on ΛN := ν∗N ∩ S∗M, for arbitrary contact form α on S∗M which induces standard contact structure.
|
68 |
Théorèmes d’existence pour des équations différentielles de Stieltjes à l’aide des g-régions-solutionsMayrand, Julien 12 1900 (has links)
La méthode des régions-solutions a été développée par Frigon [7] en 2018 pour montrer l'existence de solutions à des équations différentielles ordinaires de premier ordre, dont le graphe d'une solution se trouve à l'intérieur d'une région-solution \(R \subset [0, T] \times \mathbb{R}^{N}\). Cette méthode est en particulier une généralisation des sous et sur-solutions et des tubes-solutions. On présente cette méthode et certains résultats d'existence qui en découlent.
D'autre part, la dérivée de Stieltjes, communément appelée \(g\)-dérivée, est le fruit du travail de Pouso et Rodríguez [20] en 2014, permettant l'unification des équations différentielles classiques, des équations aux échelles de temps et des équations différentielles avec impulsions. Elle est en particulier liée au théorème fondamental du calcul pour l'intégrale de Lebesgue-Stieltjes. On présente la base de cette théorie dans un premier temps, puis la façon dont cette \(g\)-dérivée généralise d'autres types d'équations différentielles ou aux échelles de temps. On introduit en particulier la notion de \((g \times I_{\mathbb{R}^{N}})\)-différentiabilité et des résultats qui découlent de cette définition. On présente de plus une fonction exponentielle qui permet de résoudre les équations différentielles de Stieltjes linéaires, introduite par Frigon et Pouso [8].
Le but de ce mémoire est de généraliser la méthode des régions-solutions, dont la généralisation s'appellera \(g\)-région-solution, afin de montrer l'existence de solutions aux équations différentielles de Stieltjes. On présente plusieurs exemples de \(g\)-régions admissibles et de \(g\)-régions-solutions, puis des théorèmes d'existence se basant sur cette méthode. On donne de plus des exemples où on applique ces théorèmes.
On termine ce mémoire en présentant deux applications des théorèmes d'existence à l'évolution d'une population de cerfs de Virginie ainsi qu'à l'évolution de la tension générée par une diode à effet tunnel résonnant (DTR) dirigée vers une diode laser (DL). / The method of solution-regions has been developed by Frigon [7] in 2018 to show the existence of solutions for first-order ordinary differential equations, where the graph of a solution is inside a solution-region \(R \subset [0, T] \times \mathbb{R}^{N}\). This method is in particular a generalization of the lower and upper solutions and of the solution-tubes. We show this method and some existence results which follow.
On the other hand, the Stieltjes derivative, more commonly called \(g\)-derivative, is the fruit of the work of Pouso and Rodríguez [20] in 2014, which unifies classic differential equations, equations on time scales and differential equations with impulses. In particular, it leads to the fundamental theorem of calculus for the Lebesgue-Stieltjes integral. We start by showing the basis of this theory, and then the way this \(g\)-derivative generalizes other types of differential or time scale equations. We introduce in particular the \((g \times I_{\mathbb{R}^{N}})\)-differentiability and results that follow from this definition. Furthermore, we present an exponential function which solves linear Stieltjes differential equations.
The goal of this thesis is to generalize the method of solution-regions, where the generalization will be called \(g\)-solution-region, to show the existence of solutions for Stieltjes differential equations. We present multiple examples of \(g\)-admissible regions and \(g\)-solution-regions, then we establish existence theorems based on this method. We also show examples where we apply these theorems.
Finally, we end this thesis by showing two applications of the existence theorems to the evolution of a population of white-tailed deer and to the evolution of the voltage generated by a resonant tunneling diode (RTD) to a laser diode (LD).
|
69 |
Aerodynamic Analysis of Conventional and Spherical TiresPakala, Akshay Kumar January 2020 (has links)
No description available.
|
70 |
Trois résultats en théorie des graphesRamamonjisoa, Frank 04 1900 (has links)
Cette thèse réunit en trois articles mon intérêt éclectique pour la théorie des graphes.
Le premier problème étudié est la conjecture de Erdos-Faber-Lovász:
La réunion de k graphes complets distincts, ayant chacun k sommets, qui ont deux-à-deux au plus un sommet en commun peut être proprement coloriée en k couleurs.
Cette conjecture se caractérise par le peu de résultats publiés. Nous prouvons qu’une nouvelle classe de graphes, construite de manière inductive, satisfait la conjecture. Le résultat consistera à présenter une classe qui ne présente pas les limitations courantes d’uniformité ou de régularité.
Le deuxième problème considère une conjecture concernant la couverture des arêtes d’un graphe:
Si G est un graphe simple avec alpha(G) = 2, alors le nombre minimum de cliques nécessaires pour couvrir l’ensemble des arêtes de G (noté ecc(G)) est au plus n, le nombre de sommets de G.
La meilleure borne connue satisfaite par ecc(G) pour tous les graphes avec nombre d’indépendance de deux est le minimum de n + delta(G) et 2n − omega(racine (n log n)), où delta(G) est le plus petit nombre de voisins d’un sommet de G. Notre objectif a été d’obtenir la borne ecc(G) <= 3/2 n pour une classe de graphes la plus large possible. Un autre résultat associé à ce problème apporte la preuve de la conjecture pour une classe particulière de graphes:
Soit G un graphe simple avec alpha(G) = 2. Si G a une arête dominante uv telle que G \ {u,v} est de diamètre 3, alors ecc(G) <= n.
Le troisième problème étudie le jeu de policier et voleur sur un graphe. Presque toutes les études concernent les graphes statiques, et nous souhaitons explorer ce jeu sur les graphes dynamiques, dont les ensembles d’arêtes changent au cours du temps. Nowakowski et Winkler caractérisent les graphes statiques pour lesquels un unique policier peut toujours attraper
le voleur, appellés cop-win, à l’aide d’une relation <= définie sur les sommets de ce graphe:
Un graphe G est cop-win si et seulement si la relation <= définie sur ses sommets est triviale.
Nous adaptons ce théorème aux graphes dynamiques. Notre démarche nous mène à une relation nous permettant de présenter une caractérisation des graphes dynamiques cop-win. Nous donnons ensuite des résultats plus spécifiques aux graphes périodiques. Nous indiquons aussi comment généraliser nos résultats pour k policiers et l voleurs en réduisant ce cas à celui d’un policier unique et un voleur unique. Un algorithme pour décider si, sur un graphe périodique donné, k policiers peuvent capturer l voleurs découle de notre caractérisation. / This thesis represents in three articles my eclectic interest for graph theory.
The first problem is the conjecture of Erdos-Faber-Lovász:
If k complete graphs, each having k vertices, have the property that every pair of distinct complete graphs have at most one vertex in common, then the vertices of the resulting graph can be properly coloured by using k colours.
This conjecture is notable in that only a handful of classes of EFL graphs are proved to satisfy the conjecture. We prove that the Erdos-Faber-Lovász Conjecture holds for a new class of graphs, and we do so by an inductive argument. Furthermore, graphs in this class have no restrictions on the number of complete graphs to which a vertex belongs or on the
number of vertices of a certain type that a complete graph must contain.
The second problem addresses a conjecture concerning the covering of the edges of a graph:
The minimal number of cliques necessary to cover all the edges of a simple graph G is denoted by ecc(G). If alpha(G) = 2, then ecc(G) <= n.
The best known bound satisfied by ecc(G) for all the graphs with independence number two is the minimum of n + delta(G) and 2n − omega(square root (n log n)), where delta(G) is the smallest number of neighbours of a vertex in G.
In this type of graph, all the vertices at distance two from a given vertex form a clique. Our approach is to extend all of these n cliques in order to cover the maximum possible number of edges. Unfortunately, there are graphs for which it’s impossible to cover all the edges with this method. However, we are able to use this approach to prove a bound of ecc(G) <= 3/2n for some newly studied infinite families of graphs.
The third problem addresses the game of Cops and Robbers on a graph. Almost all the articles concern static graphs, and we would like to explore this game on dynamic graphs, the edge sets of which change as a function of time. Nowakowski and Winkler characterize static graphs for which a cop can always catch the robber, called cop-win graphs, by means of a relation <= defined on the vertices of such graphs:
A graph G is cop-win if and only if the relation <= defined on its vertices is trivial.
We adapt this theorem to dynamic graphs. Our approach leads to a relation, that allows us to present a characterization of cop-win dynamic graphs. We will then give more specific results for periodic graphs, and we will also indicate how to generalize our results to k cops and l robbers by reducing this case to one with a single cop and a single robber. An
algorithm to decide whether on a given periodic graph k cops can catch l robbers follows from our characterization.
|
Page generated in 0.1529 seconds